A novel microfluidic platform to study exosome biology in PAH.
一种用于研究多环芳烃外泌体生物学的新型微流体平台。
基本信息
- 批准号:10378161
- 负责人:
- 金额:$ 19.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-25 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAnimal ModelAntibodiesBioinformaticsBiologicalBiological MarkersBiologyBlood VesselsCD81 geneCardiovascular systemCell Culture TechniquesCellsCharacteristicsChronicCulture MediaData SetDiseaseEndothelial CellsEndotheliumEtiologyExperimental ModelsExposure toGeneticGoalsInflammationInflammatoryInjuryLab-On-A-ChipsLifeLungMachine LearningMediatingMethodsMicrofluidicsMolecularMolecular GeneticsNucleic AcidsOutcomePathologicPathologic ProcessesPatternPhasePhenotypePhysiologicalPhysiological ProcessesPopulationProcessProductionProteomicsReportingReproducibilityResolutionRoleSeedsSignal TransductionSorting - Cell MovementStressSurfaceTechniquesTechnologyTestingTherapeutic AgentsTimeVascular remodelingVisionangiogenesisbasecytokinedesignendothelial dysfunctionexosomeextracellular vesicleshemodynamicslung microvascular endothelial cellslung pressuremachine learning algorithmmagnetic beadsmonolayermultiple omicsnew technologynovelnovel therapeuticsprotein metabolitepulmonary arterial hypertensionresponseright ventricular failureshear stressstressortechnological innovationtooltranscriptome sequencing
项目摘要
The endothelium is the cellular monolayer that covers the inner lining of the entire circulatory system. Endothelial
dysfunction is a feature of pulmonary arterial hypertension (PAH), a life-threatening disease associated with
abnormally high pulmonary pressures and chronic right heart failure. Due to the limitations of available static cell
culture and animal models, our understanding of the mechanisms that orchestrate the initiation and perseverance
of endothelial dysfunction in PAH remains incomplete. Given that endothelial dysfunction is a common finding in
PAH, an understanding of the mechanism behind maladaptive endothelial responses could help accelerate the
discovery of novel therapies for PAH. Presently, it is believed that endothelial derived exosomes contribute to
PAH by carrying signals that trigger maladaptive endothelial responses in the setting of injury. Exosomes are
cell-derived small (~30-150 nm) extracellular vesicles that carry proteins, metabolites and nucleic acids involved
in a variety of physiological and pathological processes. While it is known that exosomes carry molecular and
genetic factors associated with angiogenesis, inflammation and vasoreactivity, a comprehensive assessment of
exosome cargo of healthy and dysfunctional PMVECs has been hindered by current low-yield exosome isolation
techniques. These techniques cannot perform real-time dynamic exosome isolation from pulmonary
microvascular endothelial cells (PMVECs) exposed to PAH-associated stressors. To address this unmet need,
we have designed the MFES (Multifunctional Exosome Sorter) that can dissect the whole exosome population
into subpopulations based on size and surface markers. MFES is the first lab-on-a-chip platform that integrates:
1) a vessel-on-a-chip module for real-time characterization of PMVEC functional responses across a wide range
of physiological and pathological parameters, 2) a module for high-yield exosome size-based isolation, 3) a
surface marker based exosome sorting using magnetic beads, and 4) multi-omics phenotyping of exosomes of
PMVECs. Here, we are proposing a technology that can enable broadly to investigate the two main defining
characteristics of exosomal subtypes, i.e., size and surface markers, both separately independently, and in
combination sequentially. We will characterize changes in exosome cargo in healthy and PAH PMVECs exposed
to shear stress-related conditions in the MFES. We will isolate subpopulations of exosomes based on size and
surface markers and characterize them for their cargo (Aim 1). Then, we will determine whether exosomes
derived from stressed PMVECs can induce pathological changes in healthy PMVECs cultured in a microfluidic
culture chip (Aim 2). This technological innovation enables to study endothelial exosome biology in a setting that
represents the flow dynamics associated with PAH. Further, the use of cutting-edge -omics technologies,
bioinformatic analysis integrated with machine learning algorithms to analyze the purified exosomes is expected
to yield a comprehensive dataset of exosome cargo profiles and open exciting opportunities for investigating the
biological role of exosomes in PAH pathobiology and the testing of novel therapeutic agents.
内皮是覆盖整个循环系统内层的细胞单层。内皮细胞
功能障碍是肺动脉高压(PAH)的一个特征,是一种与
异常高的肺压力和慢性右心衰竭。由于可用静态电池的限制
文化和动物模型,我们对启动和坚持不懈的机制的理解
对PAH中内皮功能障碍的研究仍不完整。鉴于血管内皮细胞功能障碍是
PAH,了解适应不良内皮反应背后的机制可能有助于加速
发现治疗PAH的新疗法。目前,人们认为内皮细胞衍生的外切体有助于
PAH通过携带在损伤背景下触发适应不良的内皮反应的信号来实现。外切体是
细胞来源的小(~30-150 nm)细胞外小泡,携带蛋白质、代谢物和核酸
在各种生理和病理过程中。虽然已知外切体携带分子和
与血管生成、炎症和血管反应性相关的遗传因素,综合评估
目前的低产量外切体分离阻碍了健康和功能障碍的PMVECs的外切体运输
技巧。这些技术不能从肺组织中进行实时动态外显子分离
微血管内皮细胞(PMVECs)暴露于PAH相关应激源。为了解决这一未得到满足的需求,
我们设计了多功能外切体分类器(MFES),它可以对整个外切体种群进行解剖
根据大小和表面标记划分为亚种群。MFES是第一个集成了以下功能的芯片实验室平台:
1)用于在大范围内实时表征PMVEC功能响应的片上舰船模块
生理和病理参数,2)用于基于大小的高产外切体分离的模块,3)a
基于表面标记的磁珠外切体分选,以及4)外切体的多组学表型
PMVEC。在这里,我们提出了一种技术,它可以广泛地研究两个主要定义
外体亚型的特征,即大小和表面标记,分别独立地和在
按顺序组合。我们将对健康和暴露的PAH PMVECs的外切体货物的变化进行表征
MFE中与剪应力相关的条件。我们将根据大小和大小分离外染色体的亚群
表面标记,并为其货物确定其特征(目标1)。然后,我们将确定外切体是否
应激来源的PMVECs可诱导微流控培养的健康PMVECs发生病变
培养芯片(目标2)。这项技术创新使研究内皮外切体生物学成为可能
表示与PAH关联的流动动力学。此外,尖端组学技术的使用,
生物信息学分析与机器学习算法相结合来分析纯化的外切体是可望的
产生一个全面的外系体货物轮廓数据集,并为研究
外切体在PAH病理生物学和新型治疗药物试验中的生物学作用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VINICIO A DE JESUS PEREZ其他文献
VINICIO A DE JESUS PEREZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VINICIO A DE JESUS PEREZ', 18)}}的其他基金
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10619368 - 财政年份:2022
- 资助金额:
$ 19.68万 - 项目类别:
A novel microfluidic platform to study exosome biology in PAH.
一种用于研究多环芳烃外泌体生物学的新型微流体平台。
- 批准号:
10158068 - 财政年份:2021
- 资助金额:
$ 19.68万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10246191 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10021034 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10471319 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Stanford Undergraduate URM Summer Cardiovascular Research Program
斯坦福大学本科生夏季心血管研究项目
- 批准号:
10686866 - 财政年份:2019
- 资助金额:
$ 19.68万 - 项目类别:
Endothelial-pericyte interactions in the pathogenesis of pulmonary arterial hypertension
肺动脉高压发病机制中的内皮-周细胞相互作用
- 批准号:
10522873 - 财政年份:2017
- 资助金额:
$ 19.68万 - 项目类别:
Endothelial-pericyte interactions in the pathogenesis of pulmonary arterial hypertension
肺动脉高压发病机制中的内皮-周细胞相互作用
- 批准号:
10689249 - 财政年份:2017
- 资助金额:
$ 19.68万 - 项目类别:
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10869189 - 财政年份:2017
- 资助金额:
$ 19.68万 - 项目类别:
The Wnt7a/ROR2 axis in the pathogenesis of pulmonary arterial hypertension
Wnt7a/ROR2轴在肺动脉高压发病机制中的作用
- 批准号:
10609932 - 财政年份:2017
- 资助金额:
$ 19.68万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.68万 - 项目类别:
Research Grant














{{item.name}}会员




