Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
基本信息
- 批准号:10379090
- 负责人:
- 金额:$ 23.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-12 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D ultrasoundAcousticsAcuteAddressAdenosineAdenosine A2B ReceptorAffectAgeAnimal ModelAntiinflammatory EffectAreaAtherosclerosisAwardBlood VesselsBlood flowCaliberCardiovascular DiseasesCathetersChronicChronic DiseaseClinical TrialsClinical Trials DesignCoagulation ProcessComplicationContrast MediaConvectionCoronary ArteriosclerosisCoronary arteryCytolysisDevelopmentDiabetes MellitusDiagnostic ImagingDiffuseDiseaseDistalDoseElementsEncapsulatedEndothelial CellsEndotheliumErythrocytesFoundationsFrequenciesFundingGene-ModifiedGrantHealth Care CostsHeartHeart failureHumanHuman BiologyHyperlipidemiaInfarctionInflammationIschemiaIsolated limb perfusionKnowledgeLeft Ventricular DysfunctionLegLeg UlcerLimb structureLungMapsMediatingMediator of activation proteinMethodsMicrobubblesMicrocirculationModelingMorbidity - disease rateMotionMusMuscleMuscle relaxation phaseMyocardial IschemiaMyocardial perfusionMyocardiumPathway interactionsPatientsPerfusionPeripheralPeripheral arterial diseasePhysiologic pulsePilot ProjectsPre-Clinical ModelPrimatesProstaglandinsProtocols documentationPulmonary EmbolismPulmonary Vascular ResistanceReceptor SignalingRegional PerfusionReperfusion TherapyRestRiskRisk FactorsRoleSchemeSignal TransductionSkeletal MuscleSmooth MuscleSyndromeSystemTechniquesTestingTherapeuticThrombosisTissue PreservationTissue ViabilityTissuesUltrasonic TherapyUnited StatesVascular DiseasesVascular resistanceVasodilationVasospasmacute coronary syndromeatherosclerosis riskbaseclinical diagnosticsclinical effectcontrast enhancedcritical limb Ischemiadesignfrailtyimprovedinhibitorlimb ischemiamortalitymouse modelnecrotic tissuenonhuman primatenovelnovel therapeutic interventionpreconditioningpressurepreventreceptorsexthromboticultrasoundvolunteerwound healing
项目摘要
SUMMARY
Ultrasound (US) is used for a variety of therapeutic applications. Over a range of different frequencies and
powers, US has been shown to produce to produce modest increases in arterial diameter and tissue perfusion
in animal models of limb and myocardial ischemia. In the initial funding period for this award, we described how
the combination of US with microbubble (MB) contrast agents that undergo inertial cavitation during high-power
contrast-enhanced US (CEU) produces much greater augmentation of limb skeletal muscle perfusion (up to
10-fold) than US alone. Brief CEU cavitation protocols were found to reverse limb ischemia for >24 hrs in
animal models, and a clinical trial in patients with peripheral artery disease (PAD) confirmed that MB cavitation
increases limb perfusion by several fold. In the course of our studies, optimal conditions for these bioeffects
were investigated which mandated us to design novel US pulse schemes and 3-D exposure capability. From a
mechanistic standpoint, we carefully mapped pathways responsible for cavitation-induced flow augmentation
which rely on shear-mediated ATP release from endothelial cells and erythrocytes, with secondary purinergic
vasodilation through downstream mediators (NO, prostaglandins, adenosine). Knowledge of the optimal
conditions and mechanistic underpinnings is critical for our current efforts to apply cavitation and activation of
ATP channels to treat ischemic disease by augmenting flow or by other potentially beneficial anti-thrombotic
and anti-inflammatory effects of purinergic signaling. The overall aim of this renewal is to leverage knowledge
from the first funding period in order to explore the therapeutic role of cavitation and non-cavitation US for
acute and chronic ischemic syndromes. In Aim 1 preclinical models will be used to determine whether limb
flow-augmentation from MB cavitation using previously-optimized pulse schemes can: (a) prevent tissue
necrosis in acute ischemia, with a particular focus on the effect of clinical variables (age, sex, hyperlipidemia,
diabetes), and (b) improve wound healing and limb function in chronic disease. The functional role of purinergic
vascular signaling will be evaluated by using inhibitor strategies or gene--modified models. In Aim 2 we will
determine whether MB cavitation directly augments myocardial perfusion in acute MI using murine models that
allow us to manipulate purinergic pathways, and in primate models that more closely resemble human biology.
We will also study how US-mediated ATP release has the potential to mitigate inflammation, and microvascular
thrombosis upon reperfusion. In Aim 3 we will test whether US energy from multi-element high-power intra-
arterial catheters increases downstream perfusion through shear-mediated purinergic pathways. This Aim is
based on evidence that therapeutic US catheters used in patients with pulmonary embolism can reduce
pulmonary vascular resistance even without clot lysis. Our proposal represents the translational steps for
development of non-invasive therapies for acute and chronic vascular diseases and will form the basis for the
design of clinical trials that we plan to initiate as the key unsolved issues are addressed.
摘要
超声波(美国)被用于各种治疗应用。在一系列不同的频率和
美国的POWERS已被证明可使动脉内径和组织灌注量适度增加
在肢体和心肌缺血的动物模型中。在该奖项的初始资助期,我们描述了如何
超声结合微气泡造影剂在高功率时产生惯性空化
对比增强超声(CEU)可显著增加肢体骨骼肌的血流灌注(最高可达
是美国的10倍)。简明的CEU空化方案被发现可以逆转肢体缺血24小时
动物模型和外周动脉疾病(PAD)患者的临床试验证实MB空化
增加肢体灌注量数倍。在我们的研究过程中,这些生物效应的最佳条件
要求我们设计新颖的US脉冲方案和3-D曝光能力。从一个
从力学的角度来看,我们仔细绘制了空化诱导流动增强的路径图
依赖于剪切力介导的内皮细胞和红细胞释放ATP,并有次级嘌呤能
通过下游介质(NO、前列腺素、腺苷)扩张血管。最优的知识
条件和机械基础是我们目前努力应用空化和激活的关键
通过增加血流量或其他潜在有益的抗血栓药物治疗缺血性疾病的ATP通道
以及嘌呤能信号的抗炎作用。这一更新的总体目标是利用知识
从第一个资助期开始,以探索空化和非空化的治疗作用
急性和慢性缺血综合征。在目标1中,将使用临床前模型来确定肢体
使用先前优化的脉冲方案从MB空化中增加流量可以:(A)防止组织
急性缺血中的坏死,特别关注临床变量(年龄,性别,高脂血症,
(B)改善慢性疾病的伤口愈合和肢体功能。嘌呤能的功能作用
血管信号转导将通过使用抑制策略或基因修改模型进行评估。在《目标2》中我们将
确定MB空化是否直接增加急性心肌梗死小鼠的心肌灌注
允许我们操纵嘌呤能通路,并在更接近人类生物学的灵长类动物模型中。
我们还将研究美国介导的ATP释放如何有可能减轻炎症和微血管
再灌流时血栓形成。在目标3中,我们将测试美国能源是否来自多元高功率内部
动脉导管通过剪切力介导的嘌呤能通路增加下游的灌注量。这个目标是
有证据表明,治疗性US导管用于肺栓塞患者可以减少
肺血管阻力即使在没有血栓溶解的情况下。我们的建议代表了以下翻译步骤
开发治疗急慢性血管疾病的非侵入性疗法,并将成为
我们计划启动的临床试验的设计作为关键的未解决问题得到了解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan R Lindner其他文献
1074-155 The severity of peripheral vascular disease can be assessed by skeletal muscle contrast-enhanced ultrasound
- DOI:
10.1016/s0735-1097(04)91391-5 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Thanjavur K Bragadeesh;Antionio Micari;marco Pascotto;Ibrahim Sari;Sanjiv Kaul;Jonathan R Lindner - 通讯作者:
Jonathan R Lindner
1074-152 Will combinations of multiple agents produce more robust contrast imaging? An in vitro study and in vivo studies in dogs
- DOI:
10.1016/s0735-1097(04)91388-5 - 发表时间:
2004-03-03 - 期刊:
- 影响因子:
- 作者:
Xiaokui Li;Hui Jiang;Diane Paine;Zuhua Mao;Aarti Hejmadi Bhat;Rima S Bader;Patrick von Behren;David Gustafson;Jonathan R Lindner;Alexander L Klibanov;David J Sahn - 通讯作者:
David J Sahn
Jonathan R Lindner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan R Lindner', 18)}}的其他基金
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
主动脉瓣狭窄病理学研究中的先进无创成像
- 批准号:
10693935 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Advanced Non-invasive Imaging in the Investigation of Aortic Stenosis Pathobiology
先进的无创成像在主动脉瓣狭窄病理学研究中的应用
- 批准号:
10522099 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9258481 - 财政年份:2016
- 资助金额:
$ 23.96万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10592406 - 财政年份:2016
- 资助金额:
$ 23.96万 - 项目类别:
Augmentation of Tissue Perfusion in PAD with Ultrasound-mediated Cavitation
超声介导的空化增强 PAD 中的组织灌注
- 批准号:
9005245 - 财政年份:2016
- 资助金额:
$ 23.96万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10188594 - 财政年份:2016
- 资助金额:
$ 23.96万 - 项目类别:
Augmentation of Tissue Perfusion with Ultrasound-mediated Cavitation
用超声介导的空化增强组织灌注
- 批准号:
10650238 - 财政年份:2016
- 资助金额:
$ 23.96万 - 项目类别:
MOLECULAR IMAGING OF INFLAMMATION IN ATHEROSCLEROSIS
动脉粥样硬化炎症的分子成像
- 批准号:
8357882 - 财政年份:2011
- 资助金额:
$ 23.96万 - 项目类别:
CONTRAST ULTRASOUND ASSESSMENT OF MICROVASCULAR FUNCTION IN INSULIN RESISTANT
超声造影对胰岛素抵抗患者微血管功能的评估
- 批准号:
8357883 - 财政年份:2011
- 资助金额:
$ 23.96万 - 项目类别:
Molecular Imaging of Ischemic Memory with Ultrasound - Transition to Humans
超声对缺血性记忆的分子成像 - 应用于人类
- 批准号:
7838481 - 财政年份:2009
- 资助金额:
$ 23.96万 - 项目类别:
相似海外基金
CAREER: Super-Resolution 3D Ultrasound Imaging of Brain Activity
职业:大脑活动的超分辨率 3D 超声成像
- 批准号:
2237309 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Continuing Grant
Super-resolution 3D ultrasound tomography for material microstructure characterisation
用于材料微观结构表征的超分辨率 3D 超声断层扫描
- 批准号:
2815310 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Studentship
PFI-RP: Towards Democratization of Ultrafast 3D Ultrasound Imaging
PFI-RP:迈向超快 3D 超声成像的民主化
- 批准号:
2329865 - 财政年份:2023
- 资助金额:
$ 23.96万 - 项目类别:
Continuing Grant
Machine Learning on 3D Ultrasound Images and Wearable IoT Data for Brace Treatment of Spinal Deformities
基于 3D 超声图像和可穿戴物联网数据的机器学习用于脊柱畸形的支架治疗
- 批准号:
RGPIN-2020-04415 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Discovery Grants Program - Individual
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10708132 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
A novel transducer clip-on device to enable accessible and functional 3D ultrasound imaging
一种新型换能器夹式装置,可实现易于使用且功能齐全的 3D 超声成像
- 批准号:
10587466 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10670956 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Rapid 3D Ultrasound Tomography Reconstruction Methods for Guided Interventions
用于引导干预的快速 3D 超声断层扫描重建方法
- 批准号:
10509562 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
3D Ultrasound Vascular Flow Imaging System
3D超声血管血流成像系统
- 批准号:
547186-2020 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
Postgraduate Scholarships - Doctoral
3D ultrasound-based mechatronic guidance system
基于3D超声的机电一体化引导系统
- 批准号:
574470-2022 - 财政年份:2022
- 资助金额:
$ 23.96万 - 项目类别:
University Undergraduate Student Research Awards