Musculoskeletal growth and homeostasis: does extracellular fibrillin matrix regulate Notch signaling components?
肌肉骨骼生长和稳态:细胞外原纤维蛋白基质是否调节 Notch 信号传导成分?
基本信息
- 批准号:10212242
- 负责人:
- 金额:$ 19.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-08 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityBindingBinding SitesBiochemicalBone MarrowBone Morphogenetic ProteinsBreedingCalcium BindingCell CommunicationCellsCommunitiesComplexDataDevelopmentDiseaseDysplasiaEGF-Like DomainExtracellular MatrixFBN1FutureGenesGeneticGenetic DiseasesGoalsGrowthGrowth FactorHomeostasisHumanHuman GeneticsIn VitroInvestigationJointsKyphosis deformity of spineLearningLigandsMarfan SyndromeMeasuresMicroscopyMolecularMorphologyMusMusculoskeletalMutant Strains MiceMutationPathogenesisPathway interactionsPhenotypeProteomicsReporterRoleSignal TransductionSiteSkeletal MuscleSkeletal boneTestingTimeTissuesTransforming Growth Factor betaTransgenic MiceWeill-Marchesani syndromeWorkYin-Yangautosomal dominant mutationbaseextracellularfibrillingeleophysic dysplasiain vivoin vivo evaluationinsightjoint stiffnesslong bonemouse modelmutantnotch proteinnovelpostnatalscoliosisskeletal abnormalitystem
项目摘要
PROJECT SUMMARY
Autosomal dominant mutations in FBN1, the gene for fibrillin-1, cause the Marfan syndrome as well as
the acromelic dysplasias such as Weill-Marchesani syndrome, geleophysic dysplasia, and acromicric
dysplasia. These genetic disorders provide evidence that fibrillin-1 controls musculoskeletal growth and
homeostasis. However, it is unknown why most of the mutations in FBN1 cause tall stature, arachnodactyly,
hypermobile joints, and poor musculature (typical features of the Marfan syndrome) while other mutations in
FBN1 result in the opposite features of short stature, brachydactyly, stiff joints, and hypermusculature (typical
of the acromelic dysplasias). Because fibrillins target and sequester growth factors such as Bone
Morphogenetic Proteins (BMPs) and the large latent TGFβ complexes, the yin yang musculoskeletal features
in the fibrillinopathies are thought to reflect different effects of mutations on growth factors. Within this context,
there remain multiple mechanisms to be elucidated in both time and space. The long-term goal of this work is
to learn how cellular interactions with fibrillin-1 coordinate growth factor signaling during postnatal
musculoskeletal growth and pathogenesis of disease.
The short-term goal of this application is to test the hypothesis that novel interactions between fibrillin-1
and Notch signaling components are required for postnatal musculoskeletal growth and homeostasis.
Biochemical data indicate that fibrillin-1 binds to Notch signaling components with affinities similar to those
measured for Notch-Jagged interactions. Because conventional concepts of Notch signaling are based on
cell-cell interactions between Notch receptors on one cell and Notch ligands (like Jagged or Delta) on an
adjacent cell, our results showing interactions between Notch signaling components and fibrillin, an
extracellular matrix molecule, are truly ground-breaking. To determine the in vivo impact of these interactions,
we will use Fbn1 targeted mice in which the binding site for Notch signaling components has been deleted.
This R21 application is “exploratory/developmental” in that it will explore/develop our exciting in vitro
findings of interactions between fibrillin and Notch signaling components. These interactions will be tested in
vivo in a novel mouse model which can be used to further advantage in the future. We expect that successful
completion of our proposed studies will open the door to a new paradigm for extracellular control of Notch
signaling. In addition, we expect to generate homozygous mouse models with musculoskeletal phenotypes
related to those found in heterozygous humans (for example, shortened long bones, kyphosis/scoliosis,
abnormal musculature), but in exaggerated form, and especially useful to begin investigations of molecular
interactions that cause these phenotypes. In the future, others in the scientific community will have the
opportunity to elucidate how fibrillin matrix participates in the control of Notch signaling in a host of various
spatial and temporal contexts.
项目摘要
FBN 1(编码BFN-1的基因)中的常染色体显性突变导致马凡氏综合征,
肢端发育不良如Weill-Marchesani综合征、胶状体发育不良和肢端微
发育不良这些遗传性疾病提供了证据表明,Escherin-1控制肌肉骨骼生长,
体内平衡然而,目前还不清楚为什么FBN 1中的大多数突变会导致高身材,蜘蛛状指,
关节活动过度,肌肉组织差(马凡氏综合征的典型特征),而其他突变,
FBN 1导致身材矮小、短指、关节僵硬和肌肉发达(典型)的相反特征。
肢端发育不良)。由于纤维蛋白靶向并隔离生长因子,
形态发生蛋白(BMP)和大的潜在TGFβ复合物,阴阳肌肉骨骼特征
在原纤维蛋白病被认为反映了不同的影响突变的生长因子。在这方面,
在时间和空间上仍有多种机制有待阐明。这项工作的长期目标是
为了了解在出生后,细胞与生长因子-1的相互作用如何协调生长因子信号传导,
肌肉骨骼生长和疾病的发病机制。
本申请的短期目标是检验以下假设:
和Notch信号传导组分是出生后肌肉骨骼生长和体内平衡所必需的。
生物化学数据表明,Notch蛋白-1与Notch信号传导组分结合的亲和力与那些与Notch信号传导组分结合的亲和力相似。
测量Notch-Jagged相互作用。因为Notch信令的传统概念是基于
一个细胞上的Notch受体和一个细胞上的Notch配体(如Jagged或Delta)之间的细胞-细胞相互作用
我们的研究结果显示了Notch信号成分和Notch蛋白之间的相互作用,
细胞外基质分子,是真正的突破性的。为了确定这些相互作用的体内影响,
我们将使用Fbn 1靶向小鼠,其中Notch信号传导组分的结合位点已被删除。
该R21应用是“探索性/开发性”的,因为它将探索/开发我们令人兴奋的体外
Notch和Notch信号成分之间相互作用的发现。这些相互作用将在
在一种新的小鼠模型中体内,该模型可用于未来的进一步优势。我们期待成功
完成我们提出的研究将为Notch的细胞外控制打开一扇新的大门
发信号。此外,我们期望产生具有肌肉骨骼表型的纯合子小鼠模型
与在杂合子人类中发现的那些相关(例如,缩短的长骨,脊柱后凸/脊柱侧凸,
异常肌肉组织),但以夸张的形式,特别是有用的开始调查的分子
导致这些表型的相互作用。在未来,科学界的其他人将拥有
有机会阐明在各种宿主中,Notch基质如何参与Notch信号传导的控制。
空间和时间背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LYNN Y SAKAI其他文献
LYNN Y SAKAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LYNN Y SAKAI', 18)}}的其他基金
Musculoskeletal growth and homeostasis: does extracellular fibrillin matrix regulate Notch signaling components?
肌肉骨骼生长和稳态:细胞外原纤维蛋白基质是否调节 Notch 信号传导成分?
- 批准号:
10057700 - 财政年份:2020
- 资助金额:
$ 19.72万 - 项目类别:
Translational Opportunities for the Heritable Disorders of Connective Tissue
结缔组织遗传性疾病的转化机会
- 批准号:
8205239 - 财政年份:2011
- 资助金额:
$ 19.72万 - 项目类别:
27th Annual Conference of the National Marfan Foundation
国家马凡基金会第27届年会
- 批准号:
8205409 - 财政年份:2011
- 资助金额:
$ 19.72万 - 项目类别:
Microfibril Fragments: Biomarkers of Aortic Disease
微纤维碎片:主动脉疾病的生物标志物
- 批准号:
7835900 - 财政年份:2009
- 资助金额:
$ 19.72万 - 项目类别:
Microfibril Fragments: Biomarkers of Aortic Disease
微纤维碎片:主动脉疾病的生物标志物
- 批准号:
7934626 - 财政年份:2009
- 资助金额:
$ 19.72万 - 项目类别:
PROJECT 2: MOLECULAR DISSECTION OF GROWTH FACTORS INVOLVED IN MFS (Lynn Y. Sakai,
项目 2:MFS 中涉及的生长因子的分子解剖(Lynn Y. Sakai,
- 批准号:
7460910 - 财政年份:2007
- 资助金额:
$ 19.72万 - 项目类别:
6th Pan Pacific Connective Tissue Societies Symposium
第六届泛太平洋结缔组织学会研讨会
- 批准号:
7005359 - 财政年份:2005
- 资助金额:
$ 19.72万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 19.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 19.72万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 19.72万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 19.72万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 19.72万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 19.72万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 19.72万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 19.72万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 19.72万 - 项目类别:
Standard Grant