Omniview tethered capsule for low cost, non-endoscopic Barrett's esophagus screening in unsedated patients
Omniview 系留胶囊用于对未镇静患者进行低成本、非内窥镜巴雷特食管筛查
基本信息
- 批准号:10210371
- 负责人:
- 金额:$ 34.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-06 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Algorithmic SoftwareAlgorithmsBackBarrett EsophagusBiopsyBlindedBlood VesselsBostonClassificationClinicClinicalClinical ResearchColorCommunitiesComputer softwareConsultationsDataData SetDeglutitionDetectionDevelopmentDevicesDiagnosisDysplasiaEndoscopic BiopsyEndoscopyEsophageal AdenocarcinomaEsophageal mucous membraneEsophagusFamily suidaeGastroenterologistGastroenterologyGastroesophageal reflux diseaseHealthcare SystemsHistologyHumanImageImage AnalysisImaging TechniquesIncidenceInstitutesInterdisciplinary StudyLabelLengthLesionLightLightingMachine LearningMalignant NeoplasmsMapsMassachusettsMeasuresMethodsModernizationMonitorMorbidity - disease rateMucous MembraneNurse PractitionersPatient imagingPatientsPerformancePeriodicityPopulationPrimary Care PhysicianPrimary Health CareProceduresProtocols documentationRadiofrequency Interstitial AblationReaderReadingRecording of previous eventsReferral and ConsultationResearch PersonnelResolutionRiskScreening ResultSedation procedureSensitivity and SpecificitySeriesSideSoftware DesignStomachSurfaceSurvival RateSystemTechniquesTechnologyTextureTimeTissuesTrainingUnited States Department of Veterans AffairsValidationadvanced diseaseautomated analysisautomated image analysisbasecapsuleclinical imagingconvolutional neural networkcostdesigngraphical user interfaceimage processingimaging softwareimaging studyimprovedmedical schoolsmortalitynavigation aidnoveloptical imagingpatient populationpoint of carepreclinical studyprogramsrecruitscreening
项目摘要
Esophageal adenocarcinoma (EAC) is among the most lethal malignancies with a 19% five-year survival rate
and its incidence has increased several fold in the last decades. Barrett’s esophagus (BE) confers elevated risk
for progression to EAC. Patients diagnosed with BE undergo periodic surveillance endoscopy with biopsies to
detect dysplasia which can be treated by endoscopic eradication with radiofrequency ablation before it
progresses to EAC. However, the majority of diagnosed EAC patients have not had prior screening endoscopy
and present with advanced lesions that limit treatment options and result in poorer survival. The development of
a rapid, low cost, well tolerated, non-endoscopic BE screening technique that can be performed in unsedated
patients at points of care outside the endoscopy suite would improve BE detection and reduce EAC morbidity
and mortality. Our program is a multidisciplinary collaboration among investigators at the Massachusetts Institute
Technology and Veteran Affairs Boston Healthcare System / Harvard Medical School that integrates novel optical
imaging and software design, preclinical studies in swine, clinical studies in patients, and advanced image
processing / machine learning. Aim 1 will develop an omniview tethered capsule technology that generates a
map of the esophageal mucosa over a multi-centimeter length of esophagus and a series of wide angle forward
views to aid navigation as the capsule is swallowed or retracted. The images will resemble endoscopic white
light or narrow band imaging, but will not suffer from perspective distortion present in standard endoscopic or
video capsule images. This will facilitate development of automated BE detection algorithms as well as enhance
their sensitivity and specificity. This aim will also perform imaging studies in swine as a translational step toward
clinical studies. Aim 2 will determine reader sensitivity and specificity for BE detection versus standard
endoscopy / biopsy and prepare data for developing automated BE detection. Patients undergoing screening as
well as with history of BE undergoing surveillance will be recruited and unsedated capsule imaging will be
performed on the same day prior to their endoscopy. Sensitivity and specificity for detecting BE will be assessed
using multiple blinded readers and data sets suitable for developing automated BE detection algorithms will be
developed. Aim 3 will develop image analysis methods for automated BE detection by investigating classifiers
that operate on handcrafted features (colors and textures) and modern deep convolutional neural network
methods for direct classification. If successful, this program will develop a rapid, low cost and scalable method
for BE screening that would not require patient sedation, endoscopy, or tissue acquisition, and which could be
performed in community primary care clinics. The procedure would be much faster and many times lower cost
than endoscopy. Automated BE detection would enable immediate results for patient consultation and referral
to gastroenterology if indicated. Larger patient populations with expanded risk criteria could be cost effectively
screened and access to screening dramatically improved, reducing EAC mortality.
食管腺癌(EAC)是最致命的恶性肿瘤之一,5年生存率为19%
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES G FUJIMOTO其他文献
JAMES G FUJIMOTO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES G FUJIMOTO', 18)}}的其他基金
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 34.55万 - 项目类别:
Increasing nerve-sparing radical prostatectomy rates using intraoperative nonlinear microscopy
使用术中非线性显微镜提高保留神经的根治性前列腺切除术率
- 批准号:
10548166 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Increasing nerve-sparing radical prostatectomy rates using intraoperative nonlinear microscopy
使用术中非线性显微镜提高保留神经的根治性前列腺切除术率
- 批准号:
10343817 - 财政年份:2021
- 资助金额:
$ 34.55万 - 项目类别:
Omniview tethered capsule for low cost, non-endoscopic Barrett's esophagus screening in unsedated patients
Omniview 系留胶囊用于对未镇静患者进行低成本、非内窥镜巴雷特食管筛查
- 批准号:
10033192 - 财政年份:2020
- 资助金额:
$ 34.55万 - 项目类别:
Omniview tethered capsule for low cost, non-endoscopic Barrett's esophagus screening in unsedated patients
Omniview 系留胶囊用于对未镇静患者进行低成本、非内窥镜巴雷特食管筛查
- 批准号:
10431960 - 财政年份:2020
- 资助金额:
$ 34.55万 - 项目类别:
Optical Biopsy sing Optical Coherence Tomography
光学相干断层扫描光学活检
- 批准号:
7255707 - 财政年份:1997
- 资助金额:
$ 34.55万 - 项目类别:
Optical Biopsy sing Optical Coherence Tomography
光学相干断层扫描光学活检
- 批准号:
6941394 - 财政年份:1997
- 资助金额:
$ 34.55万 - 项目类别:
Optical Biopsy Using Optical Coherence Tomography
使用光学相干断层扫描进行光学活检
- 批准号:
7667472 - 财政年份:1997
- 资助金额:
$ 34.55万 - 项目类别:
OPTICAL BIOPSY USING OPTICAL COHERENCE TOMOGRAPHY
使用光学相干断层扫描进行光学活检
- 批准号:
6647187 - 财政年份:1997
- 资助金额:
$ 34.55万 - 项目类别:
Optical Biopsy Using Optical Coherence Tomography
使用光学相干断层扫描进行光学活检
- 批准号:
7891349 - 财政年份:1997
- 资助金额:
$ 34.55万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 34.55万 - 项目类别:
Research Grant














{{item.name}}会员




