Nuclear transport as a molecular and cellular vulnerability in AD
核运输是 AD 中分子和细胞的脆弱性
基本信息
- 批准号:10213341
- 负责人:
- 金额:$ 48.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaBindingBiological AssayBiological ModelsBrainCell NucleusCell fusionCell modelCellsCellular biologyCytoplasmDefectDiffusionDrug TargetingElementsEvaluationExportinsExposure toFamilyFutureGelGene ExpressionGenerationsGeneticGlycineGoalsHealthHeartHumanHydrogen BondingHydrophobic InteractionsHydrophobicityImage AnalysisImmunoassayImpairmentImportinsInterphase CellKaryopherinsKineticsLightLinkMeasurementMeasuresMicroscopyModelingModificationMolecularMovementMusNerve DegenerationNeurobiologyNeurodegenerative DisordersNeuronal DifferentiationNeuronsNuclearNuclear EnvelopeNuclear ExportNuclear ImportNuclear PoreNuclear Pore ComplexNuclear ProteinsOptical reporterPathologyPathway interactionsPatientsPeptidesPharmaceutical PreparationsPharmacologyPhenylalaninePore ProteinsProtein GlycosylationProteinsProteomicsProxyPublicationsRegulationResearchResolutionSignal TransductionTechniquesTestingaging brainalpha Karyopherinsbasecell typedrug candidatedrug developmentdrug discoverydrug testingexperimental studyexportin 1 proteinglycosylationheterokaryonhydrophilicityin vivoinduced pluripotent stem cellknock-downmicroscopic imagingmisfolded proteinmouse modelnerve stem cellnovelnucleocytoplasmic transportoptogeneticspreventprogramsrelating to nervous systemsuccesstau Proteinstau mutationtherapeutic candidatetooltrafficking
项目摘要
Abstract
Molecular trafficking between the nucleus and the cytoplasm is essential for cellular health and is tightly
regulated in all cell types including those in the brain. Recent publications demonstrated nuclear transport
defects in neurons in Alzheimer’s disease (AD) and related dementias (ADRDs). AD/ADRDs are caused, in
part, by misfolded tau protein, suggesting misfolded tau may impair nuclear transport by aberrantly interacting
with nuclear pore proteins. We propose that late-onset neurodegenerative disease, such as AD, reflects two
vulnerabilities: (i) At the cellular level, intrinsic loss of nuclear import efficiency during the neural differentiation
program sensitizes the neurons to damages associated with misfolded tau. (ii) At the molecular level, nuclear
pore complexes (NPCs) are selectively vulnerable to disruption by misfolded proteins because their activity
depends on exposed hydrophobic phenylalanine-glycine (FG) repeats that are easily disrupted by misfolded
AD/ADRD-tau and turn over very slowly. To test these hypothesis, we developed novel optogenetic nuclear
transport assays, based on photo-activatable NLS/NES elements. We now propose to combine Mitchison
group’s expertise in advanced microscopy and image analysis with Song group’s expertise in neuron cell
biology and pathology models to measure rates of nuclear import and export in living neurons and test the
effects of neural differentiation, misfolded tau, and drug candidates that may alleviate the effects of misfolded
tau on nuclear transport. We will (i) characterize the change in nuclear transport rates during neural
differentiation, (ii) compare the sensitivity of nuclear transport to AD/ADRD-related misfolded tau challenges
(e.g. G272V-tau and P301S-tau) in neurons and neural progenitors, and (iii) investigate the underlying
molecular mechanisms using super-resolution microscopy and immunoassays. The transport assays will also
enable future translational programs aimed at rescuing nuclear transport in aging neurons. As a test case, we
will characterize drugs that increase O-linked b-N-acetylglucosamine (O-GlcNAc) modification of intracellular
proteins. This modification is thought to inhibit aggregation of misfolded proteins such as tau. However, FG
repeat in NPC are among the most O-GlcNAc modified proteins. We propose that the function of this
druggable modification is to protect the intrinsic vulnerability of NPCs to damage by misfolded proteins.
Success on this R21 pilot will set the stage for moving our optical reporter strategy into mouse models of brain
aging and degeneration, and for identifying drug targets and testing candidate therapeutic molecules in high-
content assay formats.
抽象的
细胞核和细胞质之间的分子运输对于细胞健康至关重要,并且紧密相关
在包括大脑在内的所有细胞类型中受到调节。最近的出版物展示了核运输
阿尔茨海默病(AD)和相关痴呆症(ADRD)中的神经元缺陷。 AD/ADRD 是由
部分由错误折叠的 tau 蛋白引起,表明错误折叠的 tau 蛋白可能通过异常相互作用损害核运输
与核孔蛋白。我们认为迟发性神经退行性疾病,例如 AD,反映了两个方面
漏洞:(i)在细胞水平上,神经分化过程中核输入效率的内在损失
该程序使神经元对与错误折叠的 tau 蛋白相关的损伤敏感。 (ii) 在分子水平上,核
孔复合体 (NPC) 选择性地容易受到错误折叠蛋白质的破坏,因为它们的活性
取决于暴露的疏水性苯丙氨酸-甘氨酸 (FG) 重复序列,这些重复序列很容易被错误折叠破坏
AD/ADRD-tau 并非常缓慢地翻转。为了检验这些假设,我们开发了新型光遗传学核
基于光激活 NLS/NES 元件的转运测定。我们现在建议合并 Mitchison
团队在先进显微镜和图像分析方面的专业知识与宋团队在神经元细胞方面的专业知识
生物学和病理学模型来测量活神经元的核输入和输出率并测试
神经分化、错误折叠 tau 蛋白的影响以及可能减轻错误折叠影响的候选药物
tau 蛋白对核运输的影响。我们将(i)描述神经过程中核转运速率的变化
分化,(ii) 比较核运输对 AD/ADRD 相关错误折叠 tau 挑战的敏感性
(例如 G272V-tau 和 P301S-tau)在神经元和神经祖细胞中,以及 (iii) 研究潜在的
使用超分辨率显微镜和免疫分析的分子机制。运输分析也将
启用旨在拯救衰老神经元核运输的未来转化计划。作为一个测试用例,我们
将表征增加细胞内 O-连接 b-N-乙酰氨基葡萄糖 (O-GlcNAc) 修饰的药物
蛋白质。这种修饰被认为可以抑制错误折叠蛋白质(如 tau)的聚集。然而,FG
NPC 中的重复序列是 O-GlcNAc 修饰最多的蛋白质之一。我们建议这个功能
可药物修饰是为了保护 NPC 固有的脆弱性,使其免受错误折叠蛋白质的损害。
R21 试点的成功将为将我们的光学报告策略转移到小鼠大脑模型中奠定基础
老化和退化,以及识别药物靶点和测试候选治疗分子的高
内容分析格式。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy J Mitchison其他文献
27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells
27T超高静磁场改变人体细胞有丝分裂纺锤体的方向和形态
- DOI:
10.7554/elife.22911 - 发表时间:
2017 - 期刊:
- 影响因子:7.7
- 作者:
Lei Zhang;Yubin Hou;Zhiyuan Li;Xinmiao Ji;Ze Wang;Huizhen Wang;Xiaofei Tian;Fazhi Yu;Zhenye Yang;Li Pi;Timothy J Mitchison;Qingyou Lu;Xin Zhang - 通讯作者:
Xin Zhang
Timothy J Mitchison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy J Mitchison', 18)}}的其他基金
A Comprehensive approach to cultivating student mental well-being and resilience through meditation, community, and leadership
通过冥想、社区和领导力培养学生心理健康和适应能力的综合方法
- 批准号:
10393365 - 财政年份:2020
- 资助金额:
$ 48.06万 - 项目类别:
Pharmaco Response Signatures and Disease Mechanism
药物反应特征和疾病机制
- 批准号:
8545951 - 财政年份:2010
- 资助金额:
$ 48.06万 - 项目类别:
Mechanistic Pharmacology of Anti-Mitotics and Apoptosis Regulation
抗有丝分裂和细胞凋亡调节的机制药理学
- 批准号:
8470471 - 财政年份:2010
- 资助金额:
$ 48.06万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Phenomenon of Stem Cell Aging according to Methylation Estimates of Age After Hematopoietic Stem Cell Transplantation
根据造血干细胞移植后甲基化年龄估算干细胞衰老现象
- 批准号:
23K07844 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Age-dependent Functional Changes in Skeletal Muscle CB1 Receptors by an in Vitro Model of Aging-related Muscle Atrophy
通过衰老相关性肌肉萎缩的体外模型分析骨骼肌 CB1 受体的年龄依赖性功能变化
- 批准号:
22KJ2960 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Joint U.S.-Japan Measures for Aging and Dementia Derived from the Prevention of Age-Related and Noise-induced Hearing Loss
美日针对预防与年龄相关和噪声引起的听力损失而导致的老龄化和痴呆症联合措施
- 批准号:
23KK0156 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
The Effects of Muscle Fatigability on Gait Instability in Aging and Age-Related Falls Risk
肌肉疲劳对衰老步态不稳定性和年龄相关跌倒风险的影响
- 批准号:
10677409 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Characterizing gut physiology by age, frailty, and sex: assessing the role of the aging gut in "inflamm-aging"
按年龄、虚弱和性别表征肠道生理学特征:评估衰老肠道在“炎症衰老”中的作用
- 批准号:
497927 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Role of AGE/RAGEsignaling as a driver of pathological aging in the brain
AGE/RAGE信号传导作为大脑病理性衰老驱动因素的作用
- 批准号:
10836835 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Elucidation of the protein kinase NLK-mediated aging mechanisms and treatment of age-related diseases
阐明蛋白激酶NLK介导的衰老机制及年龄相关疾病的治疗
- 批准号:
23K06378 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Underlying mechanisms of age-related changes in ingestive behaviors: From the perspective of the aging brain and deterioration of the gustatory system.
与年龄相关的摄入行为变化的潜在机制:从大脑老化和味觉系统退化的角度来看。
- 批准号:
23K10845 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeting Age-Activated Proinflammatory Chemokine Signaling by CCL2/11 to Enhance Skeletal Muscle Regeneration in Aging
通过 CCL2/11 靶向年龄激活的促炎趋化因子信号传导以增强衰老过程中的骨骼肌再生
- 批准号:
478877 - 财政年份:2023
- 资助金额:
$ 48.06万 - 项目类别:
Operating Grants