Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
基本信息
- 批准号:10224851
- 负责人:
- 金额:$ 25.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAlgorithmsAnimal ModelAnimalsArchitectureBiologicalBlood VesselsBrainBrain imagingCell NucleusCellsCerebrumClinicalComplementCortical ColumnDataData SetDevelopmentDiffusionDiffusion Magnetic Resonance ImagingFrequenciesFunctional Magnetic Resonance ImagingGoldHumanImageInvestigationJointsMachine LearningMagnetic Resonance ImagingMicroscopicMicroscopyMorphologic artifactsMotionNeuronsOpticsPerformancePeripheral Nerve StimulationPhysiologic pulsePlayRelaxationResolutionRoleSKI geneSamplingScanningSchemeSensitivity and SpecificitySliceSpace ModelsSpecificitySpeedStructureSurfaceTechniquesTechnologyTimeVariantVeinsanimal imagingbasedenoisingdesigngray matterhuman imagingimprovedin vivoin vivo imaginginsightinstrumentationmachine learning algorithmneural circuitnovelnovel strategiesperformance testspreservationprogramsreconstructionspatiotemporaltechnology developmenttemporal measurementtool
项目摘要
Significant strides have been made in microscopic brain imaging of animal models and ex vivo samples, led by
advances in optical microscopy and new tools for manipulation of neural circuitry and targeted stimulation;
enabling us to gain new insights into neuronal cells and circuits functions at this fine scale. Concurrent to these
developments, in vivo non-invasive human brain imaging, particularly through MRI, has also undergone
significant advancement. This has allowed it to collect rich functional and structural information at the macroscale
quickly, and also aid in its push towards higher spatial resolution, where imaging at the mesoscopic scale is
starting to become feasible. Nonetheless, critical barriers remain in achieving adequate specificity and sensitivity
at this scale. The ability to image more precisely at the mesoscale both structurally and functionally with MRI will
play a critical role to bridge the gap and transfer our improved understanding at the microscale with animal and
ex vivo studies to macroscale human imaging that are performed in large scale studies and in clinical settings.
This project will create a program for MR technology development to overcome current “encoding limits” in MRI
to achieve in vivo imaging at the mesoscopic scale: diffusion, functional, and structural imaging of the human
brain at the 400–600 µm isotropic voxel size with high sensitivity and high spatial accuracy. This will push in
vivo MRI from the macro-scale toward the meso-scale of cerebral cortical columns and layers and subcortical
nuclei to transfer new insights from invasive animal and post mortem micro-scale imaging to non-invasive
human imaging. Because fundamental modules of brain organization can be observed in the meso-scale
architecture, this project will allow for in vivo investigation at relevant spatial scales with sufficient coverage.
We will undertake a synergistic ‘from-the-ground-up’ development that combines novel encoding and
reconstruction strategies with newly-available instrumentation to achieve high imaging fidelity and sensitivity at
the target resolution. SNR-efficient volumetric and continuous acquisitions along with highly-accelerated
spatio-temporal controlled-aliasing encoding will be developed. New approaches to image encoding will be
created that utilize a recently-introduced combined RF and B0 shim-array technology, not only for its original
intended purpose of reducing B0 inhomogeneity, but also to complement conventional encoding schemes to
increase acceleration performance, improve robustness, and achieve large artifacts mitigation, particularly for
multi-shot EPI. Synergistic reconstruction schemes will also be developed using emerging concepts in low-rank
and multi-dimensional sub-space modeling combined with powerful Machine Learning (ML) algorithms. The
proposed time-resolved reconstruction of both functional and structural data will provide a new, rich imaging
dataset with hundreds of TEs and TIs from a single scan. With this approach, the detrimental image blurring
from relaxation effects and distortion from B0 inhomogeneity, will also be removed to create sharp, high-fidelity
datasets.
在动物模型和离体样本的显微脑成像方面取得了重大进展
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kawin Setsompop其他文献
Kawin Setsompop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kawin Setsompop', 18)}}的其他基金
An acquisition and reconstruction framework to enable mesoscale human fMRI on clinical 3 Tesla scanners
一种采集和重建框架,可在临床 3 Tesla 扫描仪上实现中尺度人体 fMRI
- 批准号:
10481056 - 财政年份:2022
- 资助金额:
$ 25.64万 - 项目类别:
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
- 批准号:
10038180 - 财政年份:2020
- 资助金额:
$ 25.64万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
9231451 - 财政年份:2016
- 资助金额:
$ 25.64万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
10293699 - 财政年份:2016
- 资助金额:
$ 25.64万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8699036 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8521294 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8122200 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
7952731 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8507873 - 财政年份:2010
- 资助金额:
$ 25.64万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.64万 - 项目类别:
Continuing Grant