MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
基本信息
- 批准号:8699036
- 负责人:
- 金额:$ 24.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-05 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmic SoftwareAlgorithmsAnisotropyAreaBrainBrain imagingClinicalClinical SciencesConsultationsCoupledCouplingDataDevelopmentDevelopment PlansDiffusionDiffusion Magnetic Resonance ImagingDiseaseEnvironmentFaceFiberFunctional Magnetic Resonance ImagingFunctional disorderGoalsHealthHumanImageImaging TechniquesImaging technologyIndividualInstitutionKnowledgeMagnetic Resonance ImagingMapsMeasurementMeasuresMentorsMethodologyMethodsModelingNeuronal InjuryNeurosciencesNoisePathologyPerformancePhasePhysicsPhysiologic pulsePlayProbabilityProcessPropertyProtocols documentationResearchResearch Project GrantsResolutionRestSamplingScanningSchemeSensitivity and SpecificitySeriesSignal TransductionSliceSpeedStagingStudy SubjectTechniquesTechnologyTestingThree-Dimensional ImagingTimeTime StudyTrainingTranslatingUncertaintyWorkbasebioimagingcareercareer developmentclinical applicationclinically relevantdata acquisitiondesigngraduate studentgray matterhemodynamicsimaging modalityimprovedin vivointerestmeetingsnovelprocess optimizationprogramsreconstructionresearch studyrespiratoryscaffoldsignal processingtheoriestrendwater diffusionwhite matter
项目摘要
Project summary:
Magnetic resonance imaging has demonstrated the potential for non-invasive mapping of the structural and
functional connectivity of the human brain in health and disease. The primary methods that have emerged
include diffusion imaging and resting-state functional connectivity mapping. Although these methods have
validated capabilities for connectivity mapping, they also face technical limitations which constrain their utility.
Diffusion imaging is hampered by low sensitivity and the inefficiency of encoding the diffusion data. Similarly,
resting-state functional connectivity is limited in temporal resolution by spatial encoding during whole brain
connectivity mapping. In this research project, we hypothesize that we can greatly improve the efficiency of the
data acquisition schemes in these methods via multi-slice encoding and simultaneous refocusing acquisition.
For example, by increasing the number of images slices obtained per acquisition period from 1 slice to up to 6,
we both increase the sensitivity of the data acquisition and greatly reduce the imaging time. This development
will help advance an entire class of emerging diffusion methodology which probe the water diffusion and thus
white matter and grey matter connectivity in increasing detail over the traditional diffusion tensor image.
Similarly, it will increase the spatial-temporal resolution and the sensitivity of resting-state functional
connectivity mapping. Improving sensitivity and reduce acquisition time will pave way for routine clinical and
clinical science applications of these technologies.
During the mentored phase of the project, the candidate will draw on his signal processing and optimization
theory expertise to design RF pulses and reconstruction algorithms, while gaining knowledge in neuroscience
and MR physic to develop acquisition sequences, as well as process and interpret the brain connectivity data.
In the later stage, by combining various components of this project, experiments will be carried out to obtain
high signal in vivo data in clinically relevant time frame for resting-state functional connectivity mapping and
diffusion imaging via DTI, Q-ball, and DSI. The project fits the candidate's long-term career goal of establishing
a high-quality independent research program on data acquisition methodology in MRI that will fully utilizes the
knowledge and the inter-play between software algorithm development, MR physic, and the underlying
neuroscience. The mentored phase will be carried out at the MGH Martinos Center for Biomedical Imaging
where the candidate will take advantage of the advanced high-field MRI facility and expertise. Furthermore, the
candidate will make use of the world renowned educational opportunities at the Center's affiliated institutions
(MIT and Harvard). His career development plan includes training in MR physics and sequence design,
diffusion imaging and brain connectomics, consultations with experts and coursework in neuroscience; and
participation in seminars and scientific meetings. As part of initiating his own independent research program,
the candidate will help mentor a graduate student who will be involved in this project.
项目总结:
磁共振成像已经证明了非侵入性标测结构和
人类大脑在健康和疾病中的功能连接。已经出现的主要方法
包括扩散成像和静息状态功能连通性映射。尽管这些方法具有
除了经过验证的连接映射功能外,它们还面临技术限制,这些限制了它们的实用性。
扩散成像受到低灵敏度和对扩散数据进行编码的低效的阻碍。同样,
静息状态的功能连接在时间分辨率上受到全脑空间编码的限制
连接映射。在这个研究项目中,我们假设我们可以极大地提高
这些方法中的数据采集方案通过多切片编码和同时重新聚焦采集。
例如,通过将每个采集周期获得的图像切片的数量从1个切片增加到最多6个,
既提高了数据采集的灵敏度,又大大缩短了成像时间。这一发展
将有助于推动探索水扩散的整个新兴扩散方法的发展,从而
在传统的扩散张量图像上,白质和灰质的连通性越来越详细。
同样,它将提高空间-时间分辨率和静态泛函的灵敏度
连接映射。提高灵敏度和减少采集时间将为常规的临床和
这些技术在临床科学中的应用。
在项目的指导阶段,候选人将利用他的信号处理和优化
在获得神经科学知识的同时,具备设计射频脉冲和重建算法的理论专长
和MR PHYIC开发采集序列,以及处理和解释大脑连接数据。
在后期,通过结合本项目的各个组成部分,将进行实验以获得
用于静息状态功能连接标测的临床相关时间范围内的高信号活体数据和
通过DTI、Q-ball和DSI进行扩散成像。该项目符合候选人的长期职业目标,即建立
一个关于磁共振成像数据采集方法的高质量独立研究计划,将充分利用
知识以及软件算法开发、MR物理和基础知识之间的相互作用
神经科学。指导阶段将在MGH Martinos生物医学成像中心进行
应聘者将利用先进的高场磁共振设备和专业知识。此外,
应聘者将利用该中心附属机构的世界知名教育机会
(麻省理工学院和哈佛大学)。他的职业发展计划包括磁共振物理和序列设计方面的培训,
扩散成像和脑连接学,咨询专家和神经科学课程;以及
参加研讨会和科学会议。作为启动自己的独立研究计划的一部分,
候选人将帮助指导一名将参与该项目的研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kawin Setsompop其他文献
Kawin Setsompop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kawin Setsompop', 18)}}的其他基金
An acquisition and reconstruction framework to enable mesoscale human fMRI on clinical 3 Tesla scanners
一种采集和重建框架,可在临床 3 Tesla 扫描仪上实现中尺度人体 fMRI
- 批准号:
10481056 - 财政年份:2022
- 资助金额:
$ 24.15万 - 项目类别:
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
- 批准号:
10038180 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
- 批准号:
10224851 - 财政年份:2020
- 资助金额:
$ 24.15万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
10293699 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
9231451 - 财政年份:2016
- 资助金额:
$ 24.15万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8521294 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8122200 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
7952731 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8507873 - 财政年份:2010
- 资助金额:
$ 24.15万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.15万 - 项目类别:
Research Grant














{{item.name}}会员




