Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.

介观尺度体内功能和结构 MR 成像的采集技术。

基本信息

  • 批准号:
    10038180
  • 负责人:
  • 金额:
    $ 26.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Significant strides have been made in microscopic brain imaging of animal models and ex vivo samples, led by advances in optical microscopy and new tools for manipulation of neural circuitry and targeted stimulation; enabling us to gain new insights into neuronal cells and circuits functions at this fine scale. Concurrent to these developments, in vivo non-invasive human brain imaging, particularly through MRI, has also undergone significant advancement. This has allowed it to collect rich functional and structural information at the macroscale quickly, and also aid in its push towards higher spatial resolution, where imaging at the mesoscopic scale is starting to become feasible. Nonetheless, critical barriers remain in achieving adequate specificity and sensitivity at this scale. The ability to image more precisely at the mesoscale both structurally and functionally with MRI will play a critical role to bridge the gap and transfer our improved understanding at the microscale with animal and ex vivo studies to macroscale human imaging that are performed in large scale studies and in clinical settings. This project will create a program for MR technology development to overcome current “encoding limits” in MRI to achieve in vivo imaging at the mesoscopic scale: diffusion, functional, and structural imaging of the human brain at the 400–600 µm isotropic voxel size with high sensitivity and high spatial accuracy. This will push in vivo MRI from the macro-scale toward the meso-scale of cerebral cortical columns and layers and subcortical nuclei to transfer new insights from invasive animal and post mortem micro-scale imaging to non-invasive human imaging. Because fundamental modules of brain organization can be observed in the meso-scale architecture, this project will allow for in vivo investigation at relevant spatial scales with sufficient coverage. We will undertake a synergistic ‘from-the-ground-up’ development that combines novel encoding and reconstruction strategies with newly-available instrumentation to achieve high imaging fidelity and sensitivity at the target resolution. SNR-efficient volumetric and continuous acquisitions along with highly-accelerated spatio-temporal controlled-aliasing encoding will be developed. New approaches to image encoding will be created that utilize a recently-introduced combined RF and B0 shim-array technology, not only for its original intended purpose of reducing B0 inhomogeneity, but also to complement conventional encoding schemes to increase acceleration performance, improve robustness, and achieve large artifacts mitigation, particularly for multi-shot EPI. Synergistic reconstruction schemes will also be developed using emerging concepts in low-rank and multi-dimensional sub-space modeling combined with powerful Machine Learning (ML) algorithms. The proposed time-resolved reconstruction of both functional and structural data will provide a new, rich imaging dataset with hundreds of TEs and TIs from a single scan. With this approach, the detrimental image blurring from relaxation effects and distortion from B0 inhomogeneity, will also be removed to create sharp, high-fidelity datasets.
在动物模型和体外样本的显微脑成像方面取得了重大进展,由 光学显微镜和操纵神经回路和靶向刺激的新工具的进展; 使我们能够在这种精细的规模下对神经细胞和电路功能有新的了解。与这些同时发生的 发展,活体非侵入性人脑成像,特别是通过核磁共振成像,也经历了 取得了重大进展。这使得它能够在宏观尺度上收集丰富的功能和结构信息 快速,也有助于其推动更高的空间分辨率,其中介观尺度的成像是 开始变得可行了。尽管如此,在实现足够的特异性和敏感性方面仍然存在关键障碍。 以这样的规模。使用MRI在结构和功能上更精确地在中尺度上成像的能力将 发挥关键作用,弥合差距,并将我们在微观层面上与动物和 从体外研究到大规模研究和临床环境中进行的大规模人体成像。 该项目将创建一个磁共振技术开发计划,以克服目前磁共振成像中的“编码限制” 实现介观尺度的活体成像:人体的扩散成像、功能成像和结构成像 在400-600微米各向同性体素大小的脑部,具有高灵敏度和高空间精度。这会把它推进去 活体MRI从宏观到中观的大脑皮层柱层和皮质下 核将侵袭性动物和死后微尺度成像的新见解转移到非侵入性 人体成像。因为大脑组织的基本模块可以在中尺度上观察到 在建筑方面,该项目将允许在相关空间尺度上进行活体调查,并有足够的覆盖面。 我们将进行一种将新编码和新技术相结合的协同开发 使用最新可用的仪器实现高成像保真度和灵敏度的重建策略 目标分辨率。SNR-高效的容量和连续收购以及高度加速的 将开发时空可控混叠编码。新的图像编码方法将是 利用最近推出的组合RF和B0填充阵列技术创建的,不仅用于其原始 旨在减少B0不均匀,但也是对传统编码方案的补充,以 提高加速性能,提高健壮性,并实现大型伪影缓解,尤其是 多针外周静脉注射。还将利用低级别的新兴概念制定协同重建计划 以及多维子空间建模与强大的机器学习(ML)算法相结合。这个 拟议的功能和结构数据的时间分辨重建将提供一种新的、丰富的成像 一次扫描中包含数百个TES和TI的数据集。使用这种方法,有害的图像模糊 从松弛效果和扭曲的B0不均匀,也将被删除,以创造锐利,高保真 数据集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kawin Setsompop其他文献

Kawin Setsompop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kawin Setsompop', 18)}}的其他基金

An acquisition and reconstruction framework to enable mesoscale human fMRI on clinical 3 Tesla scanners
一种采集和重建框架,可在临床 3 Tesla 扫描仪上实现中尺度人体 fMRI
  • 批准号:
    10481056
  • 财政年份:
    2022
  • 资助金额:
    $ 26.17万
  • 项目类别:
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
  • 批准号:
    10224851
  • 财政年份:
    2020
  • 资助金额:
    $ 26.17万
  • 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
  • 批准号:
    9231451
  • 财政年份:
    2016
  • 资助金额:
    $ 26.17万
  • 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
  • 批准号:
    10293699
  • 财政年份:
    2016
  • 资助金额:
    $ 26.17万
  • 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
  • 批准号:
    8699036
  • 财政年份:
    2010
  • 资助金额:
    $ 26.17万
  • 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
  • 批准号:
    8521294
  • 财政年份:
    2010
  • 资助金额:
    $ 26.17万
  • 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
  • 批准号:
    8122200
  • 财政年份:
    2010
  • 资助金额:
    $ 26.17万
  • 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
  • 批准号:
    7952731
  • 财政年份:
    2010
  • 资助金额:
    $ 26.17万
  • 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
  • 批准号:
    8507873
  • 财政年份:
    2010
  • 资助金额:
    $ 26.17万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26.17万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了