An acquisition and reconstruction framework to enable mesoscale human fMRI on clinical 3 Tesla scanners
一种采集和重建框架,可在临床 3 Tesla 扫描仪上实现中尺度人体 fMRI
基本信息
- 批准号:10481056
- 负责人:
- 金额:$ 85.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAnimal ModelAnimalsBenchmarkingBlood VesselsBlood VolumeBlood flowBrainBrain imagingCaliberCell NucleusClinicalCommunitiesConsensusCortical ColumnCouplingDataData SetDevelopmentDropoutExcisionFunctional ImagingFunctional Magnetic Resonance ImagingGoalsHumanImageImaging technologyKnowledgeMagnetic Resonance ImagingMeasurementMeasuresMedical centerMethodsMicroscopicMotorMotor CortexNeuronsNoiseOutcomeOxygenPreparationProtocols documentationResearchResearch PersonnelResolutionRestSamplingScanningSignal TransductionSpecificitySpeedTechniquesTechnologyTestingTimeWeightbaseblood oxygen level dependentblood oxygenation level dependent responsebrain circuitrycerebral blood volumecontrast imagingexperimental studyhuman imagingimage reconstructionimaging approachimaging modalityimaging studyimprovednext generationnoveloptical imagingpreconditioningreconstructionrelating to nervous systemresponsesimulationspatiotemporaltargeted imagingtemporal measurementtoolusabilityvolunteer
项目摘要
PROJECT SUMMARY/ABSTRACT
Functional MRI (fMRI) is the most widely-used tool to noninvasively measure brain function and has produced
much of our current knowledge about the functional organization of the human brain. However, all fMRI methods
measure neuronal activity indirectly by tracking the associated local changes in blood flow, volume and
oxygenation, which limit their spatiotemporal specificity to the underlying neuronal activity. While this is often
viewed as the fundamental limitation of fMRI, recent optical imaging studies in animal models have shown a tight
coupling between microvascular diameter changes and neural activity. These data indicate that human fMRI—
as it is performed today—has vast untapped potential that can only be reaped if our measurements can be made
sensitive exclusively to changes in these smallest blood vessels. Recent human studies have demonstrated that
fMRI based on tracking changes in cerebral blood volume (CBV) with high sensitivity to microvascular diameter
changes indeed provide improved neural specificity compared to the conventional blood-oxygenation-level-
dependent (BOLD) method. Since the advent of fMRI, BOLD has been the most used fMRI contrast due to its
robustness and high sensitivity, yet consensus is building that CBV provides far more faithful measurements of
neural activity. Adoption of this powerful non-BOLD fMRI approach has been lacking due to its low sensitivity.
To address this, we will develop new imaging methods to dramatically increase sensitivity of CBV-based fMRI.
The key to our approach is the recognition that it is now possible, with advanced acquisition methods that
we have recently developed, to separate “contrast encoding” in fMRI from image encoding. Because the
standard image encoding with EPI in fMRI inherently introduces T2* weighting (and thus BOLD contrast),
emerging non-BOLD techniques must inefficiently acquire two sets of data for every measurement to remove
the unwanted BOLD contamination in post-processing. The need to acquire two sets of images, along with the
necessary post-processing, plus the T2* signal loss combine to cause up to 4× SNR-efficiency loss. Our method,
based on our distortion- and blurring-free Echo-Planar Time-resolved Imaging (EPTI) technology, overcomes
this SNR loss by eliminating the unwanted BOLD weighting. We call our new framework “Mz fMRI” as it provides
a means to generate fMRI contrast based purely on longitudinal magnetization (Mz), applicable to various non-
BOLD fMRI methods. We will provide a proof of concept of this powerful framework by integrating EPTI with
“VASO” to create an efficient CBV-fMRI without distortion, blurring, or the need for BOLD removal.
Our simulations indicate that our approach will deliver sufficient sensitivity for sub-millimeter CBV-fMRI at
3T, and will perform better than existing CBV methods at 7T; the availability of these powerful methods at 3T will
open non-BOLD fMRI up to the entire fMRI community, boosting neuronal specificity and enabling broad
application of mesoscale fMRI—such as studies of cortical columns and layers and small subcortical nuclei—
and thereby opening new possibilities for mapping whole-brain circuitry.
项目概要/摘要
功能性 MRI (fMRI) 是最广泛使用的无创测量脑功能的工具,并已产生
我们目前关于人脑功能组织的大部分知识。然而,所有的功能磁共振成像方法
通过跟踪血流、容量和相关的局部变化来间接测量神经元活动
氧合,限制了它们对潜在神经元活动的时空特异性。虽然这常常是
最近在动物模型中进行的光学成像研究被认为是功能磁共振成像的根本局限性,显示出严格的限制。
微血管直径变化与神经活动之间的耦合。这些数据表明人类功能磁共振成像——
正如今天所进行的那样——具有巨大的未开发潜力,只有我们能够进行测量才能实现这一潜力
仅对这些最小血管的变化敏感。最近的人类研究表明
基于追踪脑血容量(CBV)变化的功能磁共振成像(fMRI),对微血管直径具有高敏感性
与传统的血氧水平相比,变化确实提供了改进的神经特异性
依赖(粗体)方法。自 fMRI 出现以来,BOLD 一直是最常用的 fMRI 造影剂,因为它具有
鲁棒性和高灵敏度,但人们正在建立共识,即 CBV 可以提供更忠实的测量
神经活动。这种强大的非 BOLD fMRI 方法由于其灵敏度低而一直缺乏采用。
为了解决这个问题,我们将开发新的成像方法来显着提高基于 CBV 的 fMRI 的灵敏度。
我们方法的关键是认识到现在是可能的,先进的采集方法可以
我们最近开发了将功能磁共振成像中的“对比度编码”与图像编码分开的方法。因为
fMRI 中使用 EPI 的标准图像编码本质上引入了 T2* 加权(以及 BOLD 对比度),
新兴的非 BOLD 技术必须低效地为每次测量获取两组数据以消除
后处理中不必要的 BOLD 污染。需要获取两组图像,以及
必要的后处理,再加上 T2* 信号损失,会导致高达 4 倍的 SNR 效率损失。我们的方法,
基于我们的无失真和模糊回波平面时间分辨成像 (EPTI) 技术,克服了
通过消除不需要的 BOLD 加权来减少 SNR 损失。我们将我们的新框架称为“Mz fMRI”,因为它提供了
一种纯粹基于纵向磁化强度(Mz)生成功能磁共振成像对比的方法,适用于各种非
大胆的功能磁共振成像方法。我们将通过将 EPTI 与
“VASO”创建高效的 CBV-fMRI,不会失真、模糊,也不需要 BOLD 去除。
我们的模拟表明,我们的方法将为亚毫米 CBV-fMRI 提供足够的灵敏度
3T,并且在 7T 时将比现有的 CBV 方法表现更好;这些强大方法在 3T 的可用性将
将非 BOLD fMRI 向整个 fMRI 社区开放,提高神经元特异性并实现广泛
中尺度功能磁共振成像的应用——例如皮质柱和层以及小的皮质下核的研究——
从而为绘制全脑电路开辟了新的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kawin Setsompop其他文献
Kawin Setsompop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kawin Setsompop', 18)}}的其他基金
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
- 批准号:
10038180 - 财政年份:2020
- 资助金额:
$ 85.32万 - 项目类别:
Acquisition technology for in vivo functional and structural MR imaging at the mesoscopic scale.
介观尺度体内功能和结构 MR 成像的采集技术。
- 批准号:
10224851 - 财政年份:2020
- 资助金额:
$ 85.32万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
10293699 - 财政年份:2016
- 资助金额:
$ 85.32万 - 项目类别:
Rapid MRI acquisition for pediatric low-grade gliomas
儿童低级别胶质瘤的快速 MRI 采集
- 批准号:
9231451 - 财政年份:2016
- 资助金额:
$ 85.32万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8699036 - 财政年份:2010
- 资助金额:
$ 85.32万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8521294 - 财政年份:2010
- 资助金额:
$ 85.32万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8122200 - 财政年份:2010
- 资助金额:
$ 85.32万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
8507873 - 财政年份:2010
- 资助金额:
$ 85.32万 - 项目类别:
MRI Technology for Measurement of Functional and Structural Connectivity in Brain
用于测量大脑功能和结构连接的 MRI 技术
- 批准号:
7952731 - 财政年份:2010
- 资助金额:
$ 85.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 85.32万 - 项目类别:
Research Grant














{{item.name}}会员




