Multiscale modeling of cerebral blood flow and oxygen transport

脑血流和氧运输的多尺度建模

基本信息

  • 批准号:
    10231113
  • 负责人:
  • 金额:
    $ 39.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

The overall goal of this proposal is to gain quantitative understanding of the relationship between neural activation, blood flow and tissue oxygenation in the brain cortex, using multiscale theoretical models for blood flow, oxygen transport and flow regulation in networks of microvessels. Adequate blood flow to meet spatially and temporally varying demands of brain tissue is crucial, since lack of oxygen quickly leads to irreversible damage. The mechanisms by which blood flow is controlled are poorly understood. Multiple interactions between neural activity, metabolite levels, changes in vascular tone, network blood flow, and oxygen transport are difficult to unravel, and cannot be understood just by observing behavior of individual blood vessels. In the proposed work, the detailed structure of microvessel networks with thousands of segments in the mouse cerebral cortex will be imaged using two-photon microscopy. Observations using phosphorescence quenching nanoprobes will yield high resolution maps of tissue oxygen levels. Spectral domain optical coherence tomography will be used to measure blood flows. The multiscale modeling approach simulates biological and physical processes at the capillary diameter and cellular scale (~10 μm, including flow mechanics and active responses of vessel walls to hemodynamic, neural and metabolic stimuli), at the vessel scale (~100 μm, including segment flow resistance, oxygen loss and propagation of conducted responses along vessel walls) and at the network and tissue scale (~1000 μm, including entire network flows, perfusion, oxygen extraction and tissue hypoxic fraction). Specific Aim 1 is to develop predictive multiscale models for blood flow and oxygen transport in the mouse cerebral cortex, and validate these models using experimental data derived from multimodal imaging of the cortex microvasculature. The proposed studies will provide a model that will reconcile available data at the microscopic level with macroscopic level variables such as perfusion and oxygen extraction and will allow prediction of tissue oxygenation and occurrence of hypoxia for a range of blood perfusion and oxygen demand. Specific Aim 2 is to develop multiscale models for blood flow autoregulation and neurovascular coupling in the mouse cerebral cortex, and to test and refine these models using experimental data derived from multimodal imaging of the cortical microvasculature. The models will include effects of myogenic, metabolic, shear-dependent and conducted responses, as well as the possible role of capillary-level regulation. Models including or excluding these mechanisms will be tested for their ability to represent actual regulatory responses, as reported in the literature and as observed in multimodal imaging experiments under varying physiological conditions. Improved understanding of the mechanisms of flow regulation could lead to improved strategies for disorders related to neurovascular function, including stroke and neurodegenerative diseases, and for interpreting fMRI brain imaging.
本提案的总体目标是定量了解 使用多尺度理论, 微血管网络中的血流、氧运输和流量调节模型。足够 血液流动以满足脑组织在空间和时间上变化的需求是至关重要的, 很快就会造成不可逆转的损害。血液流动的控制机制知之甚少。 神经活动、代谢物水平、血管张力变化、网络血流之间的多重相互作用, 和氧气运输是很难解开的,不能仅仅通过观察个体的行为来理解。 血管在所提出的工作中,微血管网络的详细结构有数千个 使用双光子显微镜对小鼠大脑皮层中的节段成像。观察结果使用 磷光猝灭纳米探针将产生组织氧水平的高分辨率图。光谱 域光学相干断层扫描将用于测量血流。多尺度建模方法 模拟毛细管直径和细胞尺度(~10 μm,包括流动)的生物和物理过程 力学和血管壁对血液动力学、神经和代谢刺激的主动响应 尺度(~100 μm,包括段流阻、氧损失和传导响应的传播 沿着血管壁)以及网络和组织尺度(~1000 μm,包括整个网络流,灌注, 氧提取和组织缺氧分数)。具体目标1是开发预测多尺度模型 小鼠大脑皮层中的血流和氧气运输,并使用 实验数据来源于皮质微脉管系统的多模态成像。拟议 研究将提供一个模型,使微观水平的现有数据与宏观水平的数据相一致 变量,如灌注和氧提取,并将允许预测组织氧合, 缺氧的发生对于一系列的血液灌注和氧需求。具体目标2:发展 小鼠脑血流自动调节和神经血管耦合的多尺度模型 皮质,并使用来自多模态成像的实验数据来测试和完善这些模型 大脑皮层微血管系统这些模型将包括生肌、代谢、剪切依赖性 并进行了反应,以及毛细血管水平调节的可能作用。模型包括或 排除这些机制将测试其代表实际监管反应的能力, 在文献中报道的和在不同生理条件下的多模态成像实验中观察到的 条件对流量调节机制的更好理解可能会导致改进的策略, 与神经血管功能相关的疾病,包括中风和神经退行性疾病,以及 解读功能磁共振成像

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conditions for Kir-induced bistability of membrane potential in capillary endothelial cells.
Kir 诱导毛细血管内皮细胞膜电位双稳定性的条件。
  • DOI:
    10.1016/j.mbs.2022.108955
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Delmoe,Madison;Secomb,TimothyW
  • 通讯作者:
    Secomb,TimothyW
A fast computational model for circulatory dynamics: effects of left ventricle-aorta coupling.
Effects of pulmonary flow heterogeneity on oxygen transport parameters in exercise.
Analysis of potassium ion diffusion from neurons to capillaries: Effects of astrocyte endfeet geometry.
钾离子从神经元到毛细血管的扩散分析:星形胶质细胞末端几何形状的影响。
The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 2: Capillary Networks.
  • DOI:
    10.3389/fphys.2018.01296
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Lücker A;Secomb TW;Barrett MJP;Weber B;Jenny P
  • 通讯作者:
    Jenny P
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy W. Secomb其他文献

Timothy W. Secomb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy W. Secomb', 18)}}的其他基金

Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    10629316
  • 财政年份:
    2019
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    10186774
  • 财政年份:
    2019
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    10408143
  • 财政年份:
    2019
  • 资助金额:
    $ 39.79万
  • 项目类别:
Multiscale modeling of cerebral blood flow and oxygen transport
脑血流和氧运输的多尺度建模
  • 批准号:
    9762190
  • 财政年份:
    2017
  • 资助金额:
    $ 39.79万
  • 项目类别:
Multiscale modeling of cerebral blood flow and oxygen transport
脑血流和氧运输的多尺度建模
  • 批准号:
    9981793
  • 财政年份:
    2017
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    8508948
  • 财政年份:
    2009
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and Mathematical Modeling of Biomedical Systems
生物医学系统的计算和数学建模
  • 批准号:
    9291468
  • 财政年份:
    2009
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    7633931
  • 财政年份:
    2009
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and Mathematical Modeling of Biomedical Systems
生物医学系统的计算和数学建模
  • 批准号:
    9059103
  • 财政年份:
    2009
  • 资助金额:
    $ 39.79万
  • 项目类别:
Computational and mathematical modeling of biomedical systems
生物医学系统的计算和数学建模
  • 批准号:
    7883859
  • 财政年份:
    2009
  • 资助金额:
    $ 39.79万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 39.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了