Towards a Wearable Alcohol Biosensor: Examining the Accuracy of BAC Estimates from New-Generation Transdermal Technology using Large-Scale Human Testing and Machine Learning Algorithms

迈向可穿戴酒精生物传感器:使用大规模人体测试和机器学习算法检查新一代透皮技术的 BAC 估计值的准确性

基本信息

项目摘要

A wearable alcohol biosensor could represent a tremendous advance towards helping people make informed decisions about their drinking and, ultimately, towards curbing alcohol-related morbidity and mortality. Transdermal sensors, which measure alcohol consumption by assessing the alcohol content of insensible perspiration, offer a uniquely non-invasive, passive, and low-cost method for the continuous assessment of drinking likely to be attractive to a range of populations. But the relationship between transdermal alcohol concentration (TAC) and blood alcohol concentration (BAC) is highly complex, varying across individuals and contexts and involving some degree of lag time. Prior research, which has featured extremely small participant samples and examined old-generation transdermal devices, has been poorly suited to modeling this complexity. Thus, scientists are left with little sense for how to translate data produced by transdermal sensors into estimates of BAC. Importantly, the past decade has seen remarkable technological and analytic developments, offering the potential to tackle the challenge of TAC-BAC translation. In particular, in recent years, machine learning approaches have been developed that are particularly well suited to modeling highly complex and time-lagged relationships within larger datasets. Also during this time period, a new generation of transdermal device has come under development, featuring sleek/compact designs, smartphone integration, and capabilities for sampling TAC at approximately 90 times the rate of older-generation devices. These sensors thus provide a rich source of data for machine learning models and also, for the first time, the potential to produce transdermal BAC estimates in real time. The proposed research leverages machine learning, novel transdermal technology, and large-scale multimodal human testing to translate transdermal sensor data into estimates of BAC. Transdermal sensors will be examined in the context of multimodal research featuring a large and diverse participant sample (N=240) examined both inside and outside the laboratory. The ambulatory arm of the proposed project is aimed at capturing the TAC-BAC relationship across individuals in varying real-world drinking contexts, examining regular drinkers wearing new-generation transdermal sensors in everyday settings while providing prompted breathalyzer readings. This ambulatory research will be complemented by a laboratory study arm, aimed at examining the TAC-BAC relationship among individuals drinking in a controlled setting while alcohol dose and rate of consumption are systematically manipulated. Machine learning algorithms, including deep neural network models, will be used to create estimates of BAC from transdermal sensor data. These estimates will be examined in terms of their accuracy, temporal specificity, and also context-dependence. Thus, results will carry significance for addiction science by translating transdermal sensor data and clarifying the place of these sensors in our arsenal of techniques for assessing, preventing, and treating problem drinking.
可穿戴式酒精生物传感器可能代表着在帮助人们获得信息方面的巨大进步 关于饮酒的决定,并最终有助于遏制与酒精有关的发病率和死亡率。 透皮传感器,通过评估昏迷的人的酒精含量来测量酒精消耗量 汗液,提供了一种独特的非侵入性、被动和低成本的方法,用于持续评估 饮酒可能对一系列人群具有吸引力。但酒精透皮透皮与 酒精浓度(TAC)和血液酒精浓度(BAC)是非常复杂的,不同的人和 并涉及一定程度的滞后时间。之前的研究,参与者极少 样本和检查了老一代的透皮装置,一直不适合对此进行建模 复杂性。因此,科学家们对如何转换透皮传感器产生的数据几乎一无所知 计入BAC的估计值。重要的是,在过去的十年里,我们看到了非凡的技术和分析 发展,为应对TAC-BAC翻译的挑战提供了潜力。特别是在最近, 多年来,已经开发出特别适合于高度建模的机器学习方法 较大数据集中的复杂且时间滞后的关系。也是在这段时间里,新一代 透皮设备正在开发中,其特点是时尚/紧凑的设计,智能手机集成, 以及对TAC进行采样的能力,其采样速度大约是老一代设备的90倍。这些 因此,传感器为机器学习模型提供了丰富的数据源,也是第一次 以实时产生透皮BAC估计值。建议的研究利用了机器学习,新颖 透皮技术,以及大规模多模式人体测试,将透皮传感器数据转换为 对BAC的估计。透皮传感器将在多模式研究的背景下进行检查,其特点是 在实验室内外检查了大而多样的参与者样本(N=240)。这个 拟议项目的非卧床部分旨在捕获 改变现实世界的饮酒环境,检查佩戴新一代透皮传感器的普通饮酒者 在日常环境中,同时提供提示的呼气测定仪读数。这项动态研究将是 辅以一个实验室研究部门,旨在检查个人之间的TAC-BAC关系 在有控制的环境中饮酒,同时系统地控制饮酒量和饮酒率。 机器学习算法,包括深度神经网络模型,将被用于创建BAC的估计 来自透皮感应器数据。这些估计将从它们的准确性、时间性 专一性,也依赖于上下文。因此,研究结果将对成瘾科学具有重要意义 翻译透皮感应器数据并阐明这些感应器在我们的技术库中的位置 评估、预防和治疗问题饮酒。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catharine Fairbairn其他文献

Catharine Fairbairn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catharine Fairbairn', 18)}}的其他基金

Examining the Impact of Stress on the Emotionally Reinforcing Properties of Alcohol in Heavy Social Drinkers: A Multimodal Investigation Integrating Laboratory and Ambulatory Methods
检查压力对大量社交饮酒者的酒精情绪强化特性的影响:结合实验室和流动方法的多模式调查
  • 批准号:
    10735704
  • 财政年份:
    2023
  • 资助金额:
    $ 46.01万
  • 项目类别:
Towards a Wearable Alcohol Biosensor: Examining the Accuracy of BAC Estimates from New-Generation Transdermal Technology using Large-Scale Human Testing and Machine Learning Algorithms
迈向可穿戴酒精生物传感器:使用大规模人体测试和机器学习算法检查新一代透皮技术的 BAC 估计值的准确性
  • 批准号:
    10628010
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
Examining the Impact of Stress on the Emotionally Reinforcing Properties of Alcohol in Heavy Social Drinkers: A Multimodal Investigation Integrating Laboratory and Ambulatory Methods
检查压力对大量社交饮酒者的酒精情绪强化特性的影响:结合实验室和流动方法的多模式调查
  • 批准号:
    10190733
  • 财政年份:
    2017
  • 资助金额:
    $ 46.01万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 46.01万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 46.01万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Studentship Programs
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 46.01万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了