Low-cost detection of dementia using electronic health records data: validation and testing of the eRADAR algorithm in a pragmatic, patient-centered trial.

使用电子健康记录数据低成本检测痴呆症:在务实、以患者为中心的试验中验证和测试 eRADAR 算法。

基本信息

  • 批准号:
    10443874
  • 负责人:
  • 金额:
    $ 82.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

Nearly half of people currently living with dementia have not received a diagnosis, delaying access to treatment as well as education and support for the patient and family. Thus, NIA has requested applications to support pragmatic clinical trials of low-cost tools to improve detection of cognitive decline in clinical settings (RFA-AG- 20-051). With pilot funding from NIA, we used machine learning to develop a low-cost tool called eRADAR (electronic health record Risk of Alzheimer's and Dementia Assessment Rule), which uses easily accessible information in the electronic health record (EHR) to help identify patients with undiagnosed dementia. In addition, we interviewed patients, caregivers, clinicians, and healthcare system leaders to inform pragmatic implementation of eRADAR in clinical settings. Stakeholders felt strongly that such a tool should be implemented through primary care, in the context of existing clinical relationships, and would need to be accompanied by additional support for patients and clinicians. Our current proposal is heavily informed by this development work. In Aim 1, we will use EHR data to evaluate eRADAR's performance in different patient subgroups, including by race/ethnicity, in two healthcare systems to inform selection of cut- points for use in clinical settings. We will select an optimal cut-point to use for targeted dementia assessment with stakeholder input, balancing sensitivity, specificity, and positive predictive value. In Aim 2, we will perform a pragmatic clinical trial to determine whether implementing eRADAR as part of a supported outreach process to high-risk patients improves dementia detection. The setting will be primary care clinics within Kaiser Permanente Washington (KPWA), an integrated healthcare delivery system in Washington State, and the University of California, San Francisco (UCSF), an urban, academic healthcare system with a diverse patient population. The study includes 6 clinics with ~24,000 patients age ≥65. Within each clinic, primary care providers (PCPs) will be randomly assigned to have their patients with high eRADAR scores targeted for outreach (intervention) or to usual care (control). Our clinical research staff—whose roles were designed to reflect existing roles within these healthcare systems to maximize pragmatism—will reach out to patients with high eRADAR scores, conduct an assessment for cognitive impairment, make follow-up recommendations to PCPs, and support patients after diagnosis. Patients with high eRADAR scores in both treatment arms will be followed to determine the impact of eRADAR on new diagnoses of dementia (primary outcome) as assessed from the EHR (again, to maximize pragmatism). In Aim 3, we will explore the impact of eRADAR implementation on secondary outcomes including healthcare utilization and experience of patients and family members. If this pragmatic trial is successful, the eRADAR tool and process could be spread to other healthcare systems, potentially improving detection of cognitive decline, patient care, and quality of life.
近一半目前患有痴呆症的人没有得到诊断,延误了获得治疗的机会

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deborah E. Barnes其他文献

English- and Spanish-Speaking Vulnerable Older Adults Report Many Unique Barriers to Advance Care Planning (W215A)
  • DOI:
    10.1016/j.jpainsymman.2021.01.015
  • 发表时间:
    2021-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Linda H. Phung;Deborah E. Barnes;Aiesha M. Volow;Nikita R. Shirsat;Rebecca L. Sudore
  • 通讯作者:
    Rebecca L. Sudore
Erratum to: ‘The advance care planning PREPARE study among older Veterans with serious and chronic illness: study protocol for a randomized controlled trial’
  • DOI:
    10.1186/s13063-016-1182-y
  • 发表时间:
    2016-01-20
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Rebecca Sudore;Gem M. Le;Ryan McMahan;Mariko Feuz;Mary Katen;Deborah E. Barnes
  • 通讯作者:
    Deborah E. Barnes
VA Symposium: Links to Dementia
  • DOI:
    10.1016/j.jagp.2012.12.079
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marie A. DeWitt;Deborah E. Barnes;Mark E. Kunik;Sharon M. Gordon
  • 通讯作者:
    Sharon M. Gordon
Implementing a new multidisciplinary, remote, dementia staff training program for Veterans affairs nursing homes
  • DOI:
    10.1186/s12913-024-11464-4
  • 发表时间:
    2024-10-03
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Nikita R. Shirsat;Jennifer Ann Lee;Catherine Pham;Matthew J. Miller;Margaret A. Chesney;Francesca M. Nicosia;Linda Chao;Deborah E. Barnes
  • 通讯作者:
    Deborah E. Barnes
Scientific quality of original research articles on environmental tobacco smoke
关于环境烟草烟雾的原创研究文章的科学质量
  • DOI:
    10.1136/tc.6.1.19
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Deborah E. Barnes;L. Bero
  • 通讯作者:
    L. Bero

Deborah E. Barnes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deborah E. Barnes', 18)}}的其他基金

A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
  • 批准号:
    10696912
  • 财政年份:
    2023
  • 资助金额:
    $ 82.66万
  • 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
  • 批准号:
    10747235
  • 财政年份:
    2021
  • 资助金额:
    $ 82.66万
  • 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
  • 批准号:
    10493302
  • 财政年份:
    2021
  • 资助金额:
    $ 82.66万
  • 项目类别:
BRAIN HEALTH TOGETHER: A LIVE-STREAMING GROUP-BASED DIGITAL PROGRAM
共同促进大脑健康:基于小组的直播数字节目
  • 批准号:
    10324919
  • 财政年份:
    2021
  • 资助金额:
    $ 82.66万
  • 项目类别:
Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
  • 批准号:
    10409614
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:
EXTENDING INDEPENDENCE AND QUALITY OF LIFE FOR PEOPLE WITH ALZHEIMER'S DISEASE OR DEMENTIA THROUGH TELEHEALTH PROGRAM DELIVERY
通过远程医疗计划的实施,提高阿尔茨海默病或痴呆症患者的独立性和生活质量
  • 批准号:
    10204865
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:
Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
  • 批准号:
    10665566
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:
EXTENDING INDEPENDENCE AND QUALITY OF LIFE FOR PEOPLE WITH ALZHEIMER'S DISEASE OR DEMENTIA THROUGH TELEHEALTH PROGRAM DELIVERY
通过远程医疗计划的实施,提高阿尔茨海默病或痴呆症患者的独立性和生活质量
  • 批准号:
    10019891
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:
Identifying and supporting patients with undiagnosed dementia using the EHR Risk of Alzheimer's and Dementia Assessment Rule (eRADAR): a pilot clinical trial
使用 EHR 阿尔茨海默氏症和痴呆症风险评估规则 (eRADAR) 识别和支持未确诊的痴呆症患者:一项试点临床试验
  • 批准号:
    10213652
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:
Low-cost detection of dementia using electronic health records data: validation and testing of the eRADAR algorithm in a pragmatic, patient-centered trial.
使用电子健康记录数据低成本检测痴呆症:在务实、以患者为中心的试验中验证和测试 eRADAR 算法。
  • 批准号:
    10266125
  • 财政年份:
    2020
  • 资助金额:
    $ 82.66万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 82.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了