Temporal program for cell fate specification in the mouse embryo

小鼠胚胎细胞命运规范的时间程序

基本信息

项目摘要

SUMMARY. The first cell fate decision in mammals transforms a totipotent embryo comprising identical cells into two cell types: outer trophectoderm cells, which will give rise to the placenta, and inner pluripotent cells, which will give rise to the fetus. This decision depends on cell polarization. Although we understand how cell polarization connects to downstream signaling to specify the two cell types, the mechanisms that act earlier, to ensure cell polarization and its specific developmental timing, remain entirely unknown. To identify this mechanism, we first need to identify the upstream regulators, which have been elusive – until now. We recently found that two zygotically expressed transcription factors, Tfap2c and Tead4, together with Rho-mediated actomyosin activity, are essential and sufficient to trigger de novo cell polarization. These results provide us with an unprecedented opportunity to determine the mechanism that triggers the specific developmental timing of embryo polarization in early mammalian development. The objective of this proposal is to reveal the principles of self-organization that lead to de novo polarization and consequently the first cell fate specification in the key model mammalian embryo, the mouse embryo. Our central hypothesis is that zygotic transcription cooperates with the cytoskeleton to polarize cells and drive the first cell fate determination. We will test this hypothesis via the following Specific Aims: Aim 1: To determine what regulates timing of embryo polarization. We hypothesize that the timing of embryo polarization is controlled by Tfap2c and Tead4. We will alter the dose and developmental stage of Tfap2c and Tead4 expression and examine the effects on their downstream targets and the timing of embryo polarization. Aim 2: To determine how the apical domain becomes established. We hypothesize that Tfap2c and Tead4 regulate apical domain formation by modulating the actomyosin cytoskeleton, which in turn controls the conjugation of Par complex clusters. We will use advanced imaging techniques and pharmacological and optogenetic methods to determine the role of the actomyosin cytoskeleton in regulating apical domain formation and the dynamics of the Par complex during polarization. We will also examine how Tfap2c and Tead4 control the behavior of the actomyosin cytoskeleton and the organization of apical proteins into clusters to form the apical domain. Aim 3: To determine how altered timing of polarization affects embryo development. Embryo polarization always happens at the late 8-cell stage, just before the first cell fate decision, suggesting that the invariant timing of this polarization is critical for subsequent developmental progression. We will determine if accelerating the timing of embryo polarization by one cell cycle at the pre- implantation stage affects subsequent development, specifically cell fate and blastocyst formation before implantation and embryo morphogenesis post-implantation. We expect to discover the triggers and mechanisms that regulate the precise timing of cell polarization in the mouse embryo. Our work will likely have major medical relevance, as it will shed light on the causes of early developmental defects and pregnancy loss in humans.
总结。哺乳动物的第一个细胞命运决定将一个由相同细胞组成的全能胚胎转化为

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magdalena Zernicka-Goetz其他文献

Magdalena Zernicka-Goetz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magdalena Zernicka-Goetz', 18)}}的其他基金

Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
  • 批准号:
    10379454
  • 财政年份:
    2021
  • 资助金额:
    $ 60.42万
  • 项目类别:
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
  • 批准号:
    10557129
  • 财政年份:
    2021
  • 资助金额:
    $ 60.42万
  • 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
  • 批准号:
    10223396
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
  • 批准号:
    10657581
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
  • 批准号:
    10458580
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
  • 批准号:
    10046014
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
  • 批准号:
    10657507
  • 财政年份:
    2020
  • 资助金额:
    $ 60.42万
  • 项目类别:

相似国自然基金

由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
  • 批准号:
    82360313
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
  • 批准号:
    MR/Y001125/1
  • 财政年份:
    2024
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
  • 批准号:
    2337141
  • 财政年份:
    2024
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
  • 批准号:
    23K14186
  • 财政年份:
    2023
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
  • 批准号:
    573067-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 60.42万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
  • 批准号:
    2144380
  • 财政年份:
    2022
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201236
  • 财政年份:
    2022
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
  • 批准号:
    2201235
  • 财政年份:
    2022
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
  • 批准号:
    463633
  • 财政年份:
    2022
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
  • 批准号:
    546047-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 60.42万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了