Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
基本信息
- 批准号:10657581
- 负责人:
- 金额:$ 54.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationActinsActomyosinAffectApicalAssisted Reproductive TechnologyBehavior ControlCell CycleCellsComplexCytoskeletonDataDefectDevelopmentDevelopmental BiologyDoseEmbryoEmbryonic DevelopmentEmbryonic InductionEnsureEventExperimental ModelsFetusGATA3 geneGenetic TranscriptionGoalsHumanImaging TechniquesInner Cell MassLinkMammalsMediatingMedicalMethodsModelingMorphogenesisMusMyosin ATPaseNuclear TranslocationPlacentaPregnancy lossProcessPropertyProteinsRegenerative MedicineReproductionRoleSignal TransductionSpecific qualifier valueTestingTimeTotipotencyTotipotentUp-RegulationWorkblastocystcell fate specificationcell typeembryo tissueexperimental studyimplantationinsightmouse developmentnatural Blastocyst Implantationnoveloptogeneticspharmacologicpluripotencypolarized cellpregnancy failurepregnancy preventionpreimplantationprogenitorprogramsprotein complexrhosegregationself organizationstem cell biologytranscription factorzygote
项目摘要
SUMMARY. The first cell fate decision in mammals transforms a totipotent embryo comprising identical cells into
two cell types: outer trophectoderm cells, which will give rise to the placenta, and inner pluripotent cells, which
will give rise to the fetus. This decision depends on cell polarization. Although we understand how cell
polarization connects to downstream signaling to specify the two cell types, the mechanisms that act earlier, to
ensure cell polarization and its specific developmental timing, remain entirely unknown. To identify this
mechanism, we first need to identify the upstream regulators, which have been elusive – until now. We recently
found that two zygotically expressed transcription factors, Tfap2c and Tead4, together with Rho-mediated
actomyosin activity, are essential and sufficient to trigger de novo cell polarization. These results provide us with
an unprecedented opportunity to determine the mechanism that triggers the specific developmental timing of
embryo polarization in early mammalian development. The objective of this proposal is to reveal the principles
of self-organization that lead to de novo polarization and consequently the first cell fate specification in the key
model mammalian embryo, the mouse embryo. Our central hypothesis is that zygotic transcription cooperates
with the cytoskeleton to polarize cells and drive the first cell fate determination. We will test this hypothesis via
the following Specific Aims: Aim 1: To determine what regulates timing of embryo polarization. We
hypothesize that the timing of embryo polarization is controlled by Tfap2c and Tead4. We will alter the dose and
developmental stage of Tfap2c and Tead4 expression and examine the effects on their downstream targets and
the timing of embryo polarization. Aim 2: To determine how the apical domain becomes established. We
hypothesize that Tfap2c and Tead4 regulate apical domain formation by modulating the actomyosin
cytoskeleton, which in turn controls the conjugation of Par complex clusters. We will use advanced imaging
techniques and pharmacological and optogenetic methods to determine the role of the actomyosin cytoskeleton
in regulating apical domain formation and the dynamics of the Par complex during polarization. We will also
examine how Tfap2c and Tead4 control the behavior of the actomyosin cytoskeleton and the organization of
apical proteins into clusters to form the apical domain. Aim 3: To determine how altered timing of polarization
affects embryo development. Embryo polarization always happens at the late 8-cell stage, just before the first
cell fate decision, suggesting that the invariant timing of this polarization is critical for subsequent developmental
progression. We will determine if accelerating the timing of embryo polarization by one cell cycle at the pre-
implantation stage affects subsequent development, specifically cell fate and blastocyst formation before
implantation and embryo morphogenesis post-implantation. We expect to discover the triggers and mechanisms
that regulate the precise timing of cell polarization in the mouse embryo. Our work will likely have major medical
relevance, as it will shed light on the causes of early developmental defects and pregnancy loss in humans.
总结。哺乳动物的第一个细胞命运决定将包含相同细胞的全能胚胎转化为
两种细胞类型:滋养外胚层细胞和内多能细胞,滋养外胚层细胞形成胎盘
会孕育出胎儿。这一决定取决于细胞极化。尽管我们了解细胞如何
极化连接到下游信令,以指定两种细胞类型,即较早作用的机制,以
确保细胞极化及其特定的发育时间仍然完全未知。要确定这一点
机制方面,我们首先需要确定上游监管机构,到目前为止,这些监管机构一直难以捉摸。我们最近
发现两个合子转录因子Tfap2c和Tead4与Rho共同介导表达
肌动球蛋白活性,是触发从头细胞极化的必要条件和充分条件。这些结果为我们提供了
这是一个前所未有的机会来确定触发特定发育时机的机制
哺乳动物早期发育中的胚胎极化。这项建议的目的是揭示原则
导致从头极化的自组织,并因此在密钥中第一个细胞命运规范
模范哺乳动物胚胎,小鼠胚胎。我们的中心假设是合子转录协同作用
用细胞骨架来极化细胞,并驱动第一个细胞命运的决定。我们将通过以下方式验证这一假设
具体目标如下:目标1:确定是什么调节了胚胎极化的时间。我们
假设胚胎极化的时间由Tfap2c和Tead4控制。我们会改变剂量和
Tfap2c和Tead4表达的发育阶段及其对其下游靶和蛋白表达的影响
胚胎极化的时间。目的2:确定顶域是如何建立的。我们
假设Tfap2c和Tead4通过调节肌动球蛋白调节顶端结构域的形成
细胞骨架,它反过来控制PAR复合簇的共轭。我们将使用先进的成像技术
确定肌动蛋白细胞骨架作用的技术及药理学和光遗传学方法
在调节顶端结构域的形成和极化过程中PAR复合体的动态。我们还将
研究Tfap2c和Tead4如何控制肌动蛋白细胞骨架的行为和组织
顶端蛋白形成簇,形成顶端区域。目标3:确定极化时间的改变
影响胚胎发育。胚胎极化总是发生在8-细胞的晚期,恰好在第一个细胞之前。
细胞命运的决定,表明这种极化的不变时间对随后的发育至关重要
进步。我们将确定是否将胚胎极化的时间提前一个细胞周期
着床阶段影响随后的发育,特别是细胞命运和胚泡的形成。
植入和植入后胚胎形态发生。我们希望发现触发因素和机制
调节小鼠胚胎细胞极化的精确时间。我们的工作很可能会有重大的医疗
相关性,因为它将阐明人类早期发育缺陷和妊娠丢失的原因。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stem-cell-based human and mouse embryo models.
- DOI:10.1016/j.gde.2022.101970
- 发表时间:2022-10
- 期刊:
- 影响因子:4
- 作者:Bao, Min;Cornwall-Scoones, Jake;Zernicka-Goetz, Magdalena
- 通讯作者:Zernicka-Goetz, Magdalena
Principles of Self-Organization of the Mammalian Embryo.
- DOI:10.1016/j.cell.2020.11.003
- 发表时间:2020-12-10
- 期刊:
- 影响因子:64.5
- 作者:Zhu M;Zernicka-Goetz M
- 通讯作者:Zernicka-Goetz M
Stain-free detection of embryo polarization using deep learning.
- DOI:10.1038/s41598-022-05990-6
- 发表时间:2022-02-14
- 期刊:
- 影响因子:4.6
- 作者:Shen C;Lamba A;Zhu M;Zhang R;Zernicka-Goetz M;Yang C
- 通讯作者:Yang C
E-cadherin mediates apical membrane initiation site localisation during de novo polarisation of epithelial cavities.
- DOI:10.15252/embj.2022111021
- 发表时间:2022-12-15
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives.
- DOI:10.1016/j.ceb.2019.11.005
- 发表时间:2020-02
- 期刊:
- 影响因子:7.5
- 作者:Zhu, Meng;Zernicka-Goetz, Magdalena
- 通讯作者:Zernicka-Goetz, Magdalena
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena Zernicka-Goetz其他文献
Magdalena Zernicka-Goetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena Zernicka-Goetz', 18)}}的其他基金
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
- 批准号:
10379454 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
- 批准号:
10557129 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10223396 - 财政年份:2020
- 资助金额:
$ 54.68万 - 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
- 批准号:
10458580 - 财政年份:2020
- 资助金额:
$ 54.68万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10443657 - 财政年份:2020
- 资助金额:
$ 54.68万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10046014 - 财政年份:2020
- 资助金额:
$ 54.68万 - 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
- 批准号:
10657507 - 财政年份:2020
- 资助金额:
$ 54.68万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 54.68万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 54.68万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 54.68万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 54.68万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 54.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 54.68万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 54.68万 - 项目类别:














{{item.name}}会员




