Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
基本信息
- 批准号:10046014
- 负责人:
- 金额:$ 50.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsActomyosinAffectApicalAssisted Reproductive TechnologyBehavior ControlCell CycleCellsComplexCytoskeletonDataDefectDevelopmentDevelopmental BiologyDoseEmbryoEmbryonic DevelopmentEnsureEventExperimental ModelsFetusGATA3 geneGenetic TranscriptionGoalsHumanImaging TechniquesInner Cell MassLeadLightLinkMammalsMediatingMedicalMethodsModelingMorphogenesisMusMyosin ATPaseNuclear TranslocationPharmacologyPlacentaPregnancy lossProcessPropertyProteinsRegenerative MedicineReproductionRoleSignal TransductionTestingTimeTissuesTo specifyTotipotencyTotipotentUp-RegulationWorkbaseblastocystcell fate specificationcell typeexperimental studyimplantationinsightmouse developmentnatural Blastocyst Implantationnoveloptogeneticspluripotencypolarized cellpregnancy failurepregnancy preventionpreimplantationprogenitorprogramsprotein complexrhosegregationself organizationstem cell biologytranscription factorzygote
项目摘要
SUMMARY. The first cell fate decision in mammals transforms a totipotent embryo comprising identical cells into
two cell types: outer trophectoderm cells, which will give rise to the placenta, and inner pluripotent cells, which
will give rise to the fetus. This decision depends on cell polarization. Although we understand how cell
polarization connects to downstream signaling to specify the two cell types, the mechanisms that act earlier, to
ensure cell polarization and its specific developmental timing, remain entirely unknown. To identify this
mechanism, we first need to identify the upstream regulators, which have been elusive – until now. We recently
found that two zygotically expressed transcription factors, Tfap2c and Tead4, together with Rho-mediated
actomyosin activity, are essential and sufficient to trigger de novo cell polarization. These results provide us with
an unprecedented opportunity to determine the mechanism that triggers the specific developmental timing of
embryo polarization in early mammalian development. The objective of this proposal is to reveal the principles
of self-organization that lead to de novo polarization and consequently the first cell fate specification in the key
model mammalian embryo, the mouse embryo. Our central hypothesis is that zygotic transcription cooperates
with the cytoskeleton to polarize cells and drive the first cell fate determination. We will test this hypothesis via
the following Specific Aims: Aim 1: To determine what regulates timing of embryo polarization. We
hypothesize that the timing of embryo polarization is controlled by Tfap2c and Tead4. We will alter the dose and
developmental stage of Tfap2c and Tead4 expression and examine the effects on their downstream targets and
the timing of embryo polarization. Aim 2: To determine how the apical domain becomes established. We
hypothesize that Tfap2c and Tead4 regulate apical domain formation by modulating the actomyosin
cytoskeleton, which in turn controls the conjugation of Par complex clusters. We will use advanced imaging
techniques and pharmacological and optogenetic methods to determine the role of the actomyosin cytoskeleton
in regulating apical domain formation and the dynamics of the Par complex during polarization. We will also
examine how Tfap2c and Tead4 control the behavior of the actomyosin cytoskeleton and the organization of
apical proteins into clusters to form the apical domain. Aim 3: To determine how altered timing of polarization
affects embryo development. Embryo polarization always happens at the late 8-cell stage, just before the first
cell fate decision, suggesting that the invariant timing of this polarization is critical for subsequent developmental
progression. We will determine if accelerating the timing of embryo polarization by one cell cycle at the pre-
implantation stage affects subsequent development, specifically cell fate and blastocyst formation before
implantation and embryo morphogenesis post-implantation. We expect to discover the triggers and mechanisms
that regulate the precise timing of cell polarization in the mouse embryo. Our work will likely have major medical
relevance, as it will shed light on the causes of early developmental defects and pregnancy loss in humans.
概括。哺乳动物中的第一个细胞命运决定将包含相同细胞的全能胚胎转化为
两种细胞类型:外部滋养外胚层细胞(将产生胎盘)和内部多能细胞(将产生胎盘)
会生出胎儿。这个决定取决于细胞极化。尽管我们了解细胞如何
极化连接到下游信号传导以指定两种细胞类型,即较早起作用的机制,以
确保细胞极化及其具体发育时间仍然完全未知。为了识别这一点
为了建立机制,我们首先需要确定上游监管机构,而迄今为止,这些监管机构一直难以捉摸。我们最近
发现两个合子表达的转录因子 Tfap2c 和 Tead4 以及 Rho 介导的转录因子
肌动球蛋白活性对于触发细胞从头极化是必要且足以触发的。这些结果为我们提供了
这是一个前所未有的机会来确定触发特定发育时间的机制
早期哺乳动物发育中的胚胎极化。该提案的目的是揭示原则
导致从头极化的自组织,从而导致关键的第一个细胞命运规范
模型哺乳动物胚胎,小鼠胚胎。我们的中心假设是合子转录合作
与细胞骨架一起极化细胞并驱动第一个细胞命运的决定。我们将通过以下方式检验这个假设
具体目标如下: 目标 1:确定胚胎极化时间的调节因素。我们
假设胚胎极化的时间由 Tfap2c 和 Tead4 控制。我们将改变剂量并
Tfap2c 和 Tead4 表达的发育阶段并检查对其下游靶标的影响
胚胎极化的时间。目标 2:确定顶端域如何建立。我们
假设 Tfap2c 和 Tead4 通过调节肌动球蛋白来调节顶端结构域的形成
细胞骨架,进而控制 Par 复合体簇的缀合。我们将使用先进的成像技术
确定肌动球蛋白细胞骨架作用的技术、药理学和光遗传学方法
调节顶端域的形成和极化过程中 Par 复合体的动力学。我们还将
检查 Tfap2c 和 Tead4 如何控制肌动球蛋白细胞骨架的行为和组织
顶端蛋白质成簇形成顶端结构域。目标 3:确定极化时间如何改变
影响胚胎发育。胚胎极化总是发生在 8 细胞阶段晚期,就在第一个细胞阶段之前
细胞命运决定,表明这种极化的不变时间对于后续发育至关重要
进展。我们将确定胚胎极化的时间是否加速了一个细胞周期。
着床阶段影响随后的发育,特别是之前的细胞命运和囊胚形成
着床和着床后胚胎形态发生。我们期望发现触发因素和机制
调节小鼠胚胎中细胞极化的精确时间。我们的工作可能会涉及重大的医学
相关性,因为它将揭示人类早期发育缺陷和流产的原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Magdalena Zernicka-Goetz其他文献
Magdalena Zernicka-Goetz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Magdalena Zernicka-Goetz', 18)}}的其他基金
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
- 批准号:
10379454 - 财政年份:2021
- 资助金额:
$ 50.4万 - 项目类别:
Biological mechanisms that eliminate aneuploid cells from a mosaic conceptus in the mouse model system
从小鼠模型系统中的嵌合体概念中消除非整倍体细胞的生物学机制
- 批准号:
10557129 - 财政年份:2021
- 资助金额:
$ 50.4万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10223396 - 财政年份:2020
- 资助金额:
$ 50.4万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10657581 - 财政年份:2020
- 资助金额:
$ 50.4万 - 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
- 批准号:
10458580 - 财政年份:2020
- 资助金额:
$ 50.4万 - 项目类别:
Temporal program for cell fate specification in the mouse embryo
小鼠胚胎细胞命运规范的时间程序
- 批准号:
10443657 - 财政年份:2020
- 资助金额:
$ 50.4万 - 项目类别:
Placental models to support embryogenesis in vitro
支持体外胚胎发生的胎盘模型
- 批准号:
10657507 - 财政年份:2020
- 资助金额:
$ 50.4万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Nuclear force feedback as rheostat for actomyosin tension control
核力反馈作为肌动球蛋白张力控制的变阻器
- 批准号:
MR/Y001125/1 - 财政年份:2024
- 资助金额:
$ 50.4万 - 项目类别:
Research Grant
CAREER: Cytokinesis without an actomyosin ring and its coordination with organelle division
职业:没有肌动球蛋白环的细胞分裂及其与细胞器分裂的协调
- 批准号:
2337141 - 财政年份:2024
- 资助金额:
$ 50.4万 - 项目类别:
Continuing Grant
CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
- 批准号:
2340865 - 财政年份:2024
- 资助金额:
$ 50.4万 - 项目类别:
Continuing Grant
Elucidation of the mechanism by which actomyosin emerges cell chirality
阐明肌动球蛋白出现细胞手性的机制
- 批准号:
23K14186 - 财政年份:2023
- 资助金额:
$ 50.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Deciphering actomyosin contractility regulation during incomplete germ cell division
破译不完全生殖细胞分裂过程中肌动球蛋白收缩性的调节
- 批准号:
573067-2022 - 财政年份:2022
- 资助金额:
$ 50.4万 - 项目类别:
University Undergraduate Student Research Awards
CAREER: Actuating robots with actomyosin active gels
职业:用肌动球蛋白活性凝胶驱动机器人
- 批准号:
2144380 - 财政年份:2022
- 资助金额:
$ 50.4万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201236 - 财政年份:2022
- 资助金额:
$ 50.4万 - 项目类别:
Standard Grant
Collaborative Research: Mechanics of Reconstituted Self-Organized Contractile Actomyosin Systems
合作研究:重建自组织收缩肌动球蛋白系统的力学
- 批准号:
2201235 - 财政年份:2022
- 资助金额:
$ 50.4万 - 项目类别:
Standard Grant
Coordination of actomyosin and anillo-septin sub-networks of the contractile ring during cytokinesis
胞质分裂过程中收缩环肌动球蛋白和 anillo-septin 子网络的协调
- 批准号:
463633 - 财政年份:2022
- 资助金额:
$ 50.4万 - 项目类别:
Operating Grants
The integrin-dependent B cell actomyosin network drives immune synapse formation and B cell functions
整合素依赖性 B 细胞肌动球蛋白网络驱动免疫突触形成和 B 细胞功能
- 批准号:
546047-2020 - 财政年份:2021
- 资助金额:
$ 50.4万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




