Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
基本信息
- 批准号:10295781
- 负责人:
- 金额:$ 37.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBayesian AnalysisBayesian ModelingChemicalsCodeCommunitiesComputational algorithmComputer softwareComputersComputing MethodologiesConcentration measurementControlled EnvironmentDataData SetDatabasesDecision AnalysisDevelopmentEffectivenessEmu speciesEnvironmental HealthEquationExposure toFutureGenerationsHealth ProfessionalHybridsIceInhalation ExposureJudgmentKnowledgeLaboratoriesMarkov chain Monte Carlo methodologyMeasurementMeasuresMethodologyMethodsModelingMonitorPatternPearPositioning AttributeProcessPublic HealthResearchResearch PersonnelRisk AssessmentRisk ManagementSamplingScientific Advances and AccomplishmentsScientistSourceStatistical AlgorithmStatistical MethodsStatistical ModelsStatistical sensitivitySurfaceUncertaintyValidationWalkingWorkplaceair samplingbasecomputer generateddesignexperimental studyflexibilityimprovedinnovationmolecular dynamicsoperationparticlephysical modelphysical processprogramsresponsesemiparametricsimulationtheoriestooluser friendly softwareuser-friendlyventilation
项目摘要
Project Summary/Abstract
We propose to develop innovative statistical tools for melding exposure models and observational data aris-
ing from measurements of concentrations in controlled chamber conditions. As a first step, we will construct
a rich dataset of exposure scenarios in laboratory exposure chambers and real workplace settings, contain-
ing data on exposure determinants such as contaminant generation and ventilation rates and exposure mea-
surements. We will develop a comprehensive and computationally feasible Bayesian statistical framework for
melding the physical exposure models with experimental data from the workplace to effectively account for the
sources of uncertainty and produce reliable statistical inference (estimation and predictions). We will employ a
Bayesian framework to validate physical models from monitoring data. Our framework will also include formal
statistical measures for validating models with observed field data. We do so by assessing how adequately the
models capture features and patterns in the monitoring data, applying sensitivity analysis to the choice of priors,
and choosing or selecting a model among a set of competing models. We will also develop and disseminate a
user-friendly statistical software package that will enable researchers to implement the proposed methods for a
wide variety of physical models to analyze their data in a seamless and convenient manner. Upon successful
completion of the project, our developments will allow researchers and exposure managers to systematically
evaluate retrospective exposure, to predict current and future exposure in the absence of the working process
or operation, and to estimate exposure with only a small number of air samples with possibly high variability.
With only a few monitoring data points, our Bayesian melding framework will provide more precise estimates of
exposure than monitoring. With advances in computational methods and inexpensive software implementation,
we purport to exalt formal modeling to an indispensable position in the exposure assessors' armory.
项目总结/文摘
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial disease mapping using directed acyclic graph auto-regressive (DAGAR) models.
- DOI:10.1214/19-ba1177
- 发表时间:2019-12
- 期刊:
- 影响因子:4.4
- 作者:Datta A;Banerjee S;Hodges JS;Gao L
- 通讯作者:Gao L
Assessing Exposures from the Deepwater Horizon Oil Spill Response and Clean-up.
评估深水地平线溢油响应和清理的暴露。
- DOI:10.1093/annweh/wxab107
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Stewart,Patricia;Groth,CarolineP;Huynh,TranB;GormanNg,Melanie;Pratt,GregoryC;Arnold,SusanF;Ramachandran,Gurumurthy;Banerjee,Sudipto;Cherrie,JohnW;Christenbury,Kate;Kwok,RichardK;Blair,Aaron;Engel,LawrenceS;Sandler,DaleP
- 通讯作者:Sandler,DaleP
Spatial factor modeling: A Bayesian matrix-normal approach for misaligned data.
- DOI:10.1111/biom.13452
- 发表时间:2022-06
- 期刊:
- 影响因子:1.9
- 作者:Zhang L;Banerjee S
- 通讯作者:Banerjee S
Bayesian Spatial Modeling for Housing Data in South Africa.
- DOI:10.1007/s13571-020-00233-y
- 发表时间:2021-11
- 期刊:
- 影响因子:0.8
- 作者:Wang, Bingling;Banerjee, Sudipto;Gupta, Rangan
- 通讯作者:Gupta, Rangan
Discussion of "Optimal test procedures for multiple hypotheses controlling the familywise expected loss" by Willi Maurer, Frank Bretz, and Xiaolei Xun.
Willi Maurer、Frank Bretz 和 Xiaolei Xun 讨论“控制家庭预期损失的多重假设的最优检验程序”。
- DOI:10.1111/biom.13908
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Banerjee,Sudipto
- 通讯作者:Banerjee,Sudipto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudipto Banerjee其他文献
Sudipto Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudipto Banerjee', 18)}}的其他基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
- 批准号:
10060746 - 财政年份:2018
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications
环境健康应用中大型时空错位数据的分层建模和分析
- 批准号:
10094059 - 财政年份:2017
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
9074848 - 财政年份:2014
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
8733183 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7815451 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7943904 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7097022 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7216891 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7362423 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)