Hierarchical spatial process models for estimating and predicting health effects

用于估计和预测健康影响的分层空间过程模型

基本信息

  • 批准号:
    7943904
  • 负责人:
  • 金额:
    $ 30.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (15) Translational science and Specific Challenge Topic: (15-TW-101) Models to predict health effects of climate change. We propose to develop Bayesian hierarchical statistical methods and software that will help spatial analysts to establish relationships among health outcomes and atmospheric and climate predictors. We propose a comprehensive modeling framework to accommodate disparate sources and types of spatial-temporal data. In Aim 1 we propose a statistical modelling framework for modelling exposure, climate and health outcome data that integrates methods for point-level spatially mis- aligned data and change of support regression using Bayesian hierarchical spatial models. We identify three health outcomes: asthma hospitalizations, incidence of nonmelanoma skin cancer and a food borne disease salmonellosis. Aim 2 modifies adapts these models for use with large datasets using a dimension reduction stochastic process called the "predictive process". Finally, in Aim 3, we promise a suite of software packages that help integrate necessary spatial databases and display components with Bayesian statistical modeling ca- pability, thus delivering our methodology to a far broader audience of health and environmental researchers and administrators than is currently accessible. Identifying environmental and climate-related factors that are pronouncedly more detrimental will improve the understanding and decision making process of health researchers, policy makers and patients, thereby having far-reaching beneficial effects on the health care system and society. By redeeming the investigators from using ad-hoc and qualitative methods that often reveal deceptive stories, our proposed statistical methods can have far reaching beneficial effects in public health research that will potentially touch unexpected corners of society.
描述(由申请人提供):本申请涉及广泛的挑战领域(15)翻译科学和具体挑战主题:(15-TW-101)预测气候变化对健康影响的模型。我们建议开发贝叶斯分层统计方法和软件,帮助空间分析人员建立健康结果与大气和气候预测因素之间的关系。我们提出了一个全面的建模框架,以适应不同来源和类型的时空数据。在目标1中,我们提出了一个统计建模框架,用于模拟暴露、气候和健康结果数据,该框架集成了使用贝叶斯分层空间模型的点级空间错位数据和支持变化回归的方法。我们确定了三种健康结果:哮喘住院,非黑色素瘤皮肤癌和一种食源性疾病沙门氏菌病的发生率。AIM 2修改了这些模型,使其适用于大型数据集,使用了一种称为“预测过程”的降维随机过程。最后,在目标3中,我们承诺提供一套软件包,帮助将必要的空间数据库和显示组件与贝叶斯统计建模能力相结合,从而将我们的方法提供给比目前更广泛的健康和环境研究人员和管理人员。找出明显更有害的环境和气候相关因素,将改善卫生研究人员、政策制定者和患者的理解和决策过程,从而对卫生保健系统和社会产生深远的有利影响。通过挽救调查人员使用经常揭示欺骗性故事的临时和定性方法,我们提议的统计方法可以在公共卫生研究中产生深远的有益影响,这些研究可能会触及社会的意想不到的角落。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On nearest-neighbor Gaussian process models for massive spatial data.
Bayesian Modeling and Analysis of Geostatistical Data.
NONSEPARABLE DYNAMIC NEAREST NEIGHBOR GAUSSIAN PROCESS MODELS FOR LARGE SPATIO-TEMPORAL DATA WITH AN APPLICATION TO PARTICULATE MATTER ANALYSIS.
  • DOI:
    10.1214/16-aoas931
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Datta A;Banerjee S;Finley AO;Hamm NAS;Schaap M
  • 通讯作者:
    Schaap M
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets.
Bayesian modeling and analysis for gradients in spatiotemporal processes.
时空过程梯度的贝叶斯建模和分析。
  • DOI:
    10.1111/biom.12305
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Quick,Harrison;Banerjee,Sudipto;Carlin,BradleyP
  • 通讯作者:
    Carlin,BradleyP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sudipto Banerjee其他文献

Sudipto Banerjee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sudipto Banerjee', 18)}}的其他基金

Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
  • 批准号:
    10568797
  • 财政年份:
    2023
  • 资助金额:
    $ 30.36万
  • 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10295781
  • 财政年份:
    2018
  • 资助金额:
    $ 30.36万
  • 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
  • 批准号:
    10060746
  • 财政年份:
    2018
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications
环境健康应用中大型时空错位数据的分层建模和分析
  • 批准号:
    10094059
  • 财政年份:
    2017
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    9074848
  • 财政年份:
    2014
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
  • 批准号:
    8733183
  • 财政年份:
    2013
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
  • 批准号:
    7815451
  • 财政年份:
    2009
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7097022
  • 财政年份:
    2006
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7216891
  • 财政年份:
    2006
  • 资助金额:
    $ 30.36万
  • 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
  • 批准号:
    7362423
  • 财政年份:
    2006
  • 资助金额:
    $ 30.36万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.36万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了