Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
基本信息
- 批准号:10060746
- 负责人:
- 金额:$ 37.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutomobile DrivingBayesian AnalysisBayesian ModelingChemicalsCodeCommunitiesComputational algorithmComputer softwareComputersComputing MethodologiesConcentration measurementControlled EnvironmentDataData SetDatabasesDecision AnalysisDevelopmentEffectivenessEmu speciesEnvironmental HealthEquationExposure toFutureGenerationsHealth ProfessionalHybridsIceInhalation ExposureJudgmentKnowledgeLaboratoriesMarkov chain Monte Carlo methodologyMeasurementMeasuresMethodologyMethodsModelingMonitorPatternPearPositioning AttributeProcessPublic HealthResearchResearch PersonnelRisk AssessmentRisk ManagementSamplingScientific Advances and AccomplishmentsScientistSourceStatistical AlgorithmStatistical MethodsStatistical ModelsStatistical sensitivitySurfaceUncertaintyValidationWalkingWorkplaceair samplingbasecomputer generateddesignexperimental studyflexibilityimprovedinnovationmolecular dynamicsoperationparticlephysical modelphysical processprogramsresponsesemiparametricsimulationtheoriestooluser friendly softwareuser-friendlyventilation
项目摘要
Project Summary/Abstract
We propose to develop innovative statistical tools for melding exposure models and observational data aris-
ing from measurements of concentrations in controlled chamber conditions. As a first step, we will construct
a rich dataset of exposure scenarios in laboratory exposure chambers and real workplace settings, contain-
ing data on exposure determinants such as contaminant generation and ventilation rates and exposure mea-
surements. We will develop a comprehensive and computationally feasible Bayesian statistical framework for
melding the physical exposure models with experimental data from the workplace to effectively account for the
sources of uncertainty and produce reliable statistical inference (estimation and predictions). We will employ a
Bayesian framework to validate physical models from monitoring data. Our framework will also include formal
statistical measures for validating models with observed field data. We do so by assessing how adequately the
models capture features and patterns in the monitoring data, applying sensitivity analysis to the choice of priors,
and choosing or selecting a model among a set of competing models. We will also develop and disseminate a
user-friendly statistical software package that will enable researchers to implement the proposed methods for a
wide variety of physical models to analyze their data in a seamless and convenient manner. Upon successful
completion of the project, our developments will allow researchers and exposure managers to systematically
evaluate retrospective exposure, to predict current and future exposure in the absence of the working process
or operation, and to estimate exposure with only a small number of air samples with possibly high variability.
With only a few monitoring data points, our Bayesian melding framework will provide more precise estimates of
exposure than monitoring. With advances in computational methods and inexpensive software implementation,
we purport to exalt formal modeling to an indispensable position in the exposure assessors' armory.
项目摘要/摘要
我们建议开发创新的统计工具,将暴露模型和观测数据ARIS-
来自受控室条件下的浓度测量。作为fi的第一步,我们将构建
实验室曝光室和真实工作场所环境中暴露情景的丰富数据集包含-
关于暴露决定因素的数据,如污染物产生和通风率以及暴露手段-
保证金。我们将开发一个全面的、在计算上可行的贝叶斯统计框架
将物理暴露模型与工作场所的实验数据相结合,以有效地解释
不确定的来源,并产生可靠的统计推断(估计和预测)。我们将聘请一名
根据监测数据验证物理模型的贝叶斯框架。我们的框架还将包括正式的
用观测到的fi数据验证模型的统计方法。我们要做到这一点,需要评估
模型捕捉监测数据中的特征和模式,将敏感度分析应用于先验选择,
以及从一组竞争模型中选择或选择一个模型。我们还将制定和传播一项
用户友好的统计软件包,将使研究人员能够实施建议的方法
各种各样的物理模型,以无缝和方便的方式分析其数据。成功后
项目完成后,我们的开发将使研究人员和曝光管理人员能够系统地
评估回溯性暴露,在没有工作过程的情况下预测当前和未来的暴露
或操作,并估计只有少量可能具有高变异性的空气样本的暴露。
只有几个监测数据点,我们的贝叶斯融合框架将提供更准确的估计
暴露而不是监测。随着计算方法的进步和廉价的软件实现,
我们声称要将正式的建模提升到暴露评估员的武器库中不可或缺的位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudipto Banerjee其他文献
Sudipto Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudipto Banerjee', 18)}}的其他基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 37.12万 - 项目类别:
Flexible Bayesian Hierarchical Models for Estimating Inhalation Exposures
用于估计吸入暴露的灵活贝叶斯分层模型
- 批准号:
10295781 - 财政年份:2018
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Modeling and Analysis for Large Spatially and Temporally Misaligned Data in Environmental Health Applications
环境健康应用中大型时空错位数据的分层建模和分析
- 批准号:
10094059 - 财政年份:2017
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
9074848 - 财政年份:2014
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical Statistical Modeling and Bayesian Melding for Occupational Exposure
职业暴露的分层统计模型和贝叶斯融合
- 批准号:
8733183 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7815451 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierarchical spatial process models for estimating and predicting health effects
用于估计和预测健康影响的分层空间过程模型
- 批准号:
7943904 - 财政年份:2009
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7097022 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7216891 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
Hierachial Modeling Approaches for Geographical Boundary Analysis in Cancer Studi
癌症研究中地理边界分析的分层建模方法
- 批准号:
7362423 - 财政年份:2006
- 资助金额:
$ 37.12万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 37.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)