Predictive Coding as a Framework for Understanding Psychosis
预测编码作为理解精神病的框架
基本信息
- 批准号:10292448
- 负责人:
- 金额:$ 67.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAgeAnteriorAttenuatedAuditory PerceptionAuditory areaBehaviorBehavioralBeliefBiological AssayBrainBrain regionChronicCodeComplexComputer ModelsCuesDataDelusionsDistressElectroencephalographyElectrophysiology (science)EventExhibitsExpectancyFailureFunctional Magnetic Resonance ImagingFunctional disorderFutureGlutamatesGoalsHallucinationsHearingImpairmentIndividualInsula of ReilInterventionLearningLightMagnetic Resonance SpectroscopyMaintenanceMapsMeasurementMeasuresModelingNational Institute of Mental HealthNeuroanatomyOnset of illnessOutcomePatientsPerceptionPersonsPhysiologyPlayPrefrontal CortexProtonsPsychological reinforcementPsychosesPsychotic DisordersPublic HealthReportingResearch Domain CriteriaResearch PersonnelResistanceResponse to stimulus physiologyReversal LearningRewardsRoleSamplingSeveritiesSignal TransductionSpecific qualifier valueStimulusSymptomsSystemTask PerformancesTestingTimeUncertaintyUpdateVisual Motionbasebrain behaviorcognitive processcognitive taskdesigneffective therapyexperienceglutamatergic signalingmultisensorypersonalized medicinepredictive testpsychotic symptomsrelating to nervous systemresponsereward expectancysensory stimulustheoriesvisual stimulus
项目摘要
7. Project Summary
This application responds to the NIMH PAR-16-136, “Using the NIMH Research Domain Criteria (RDoC)
Approach to Understand Psychosis.” Psychotic symptoms, such as delusions and hallucinations, are
treatment-resistant in many patients and are associated with high levels of distress and impairment. Treatment
advances have been slowed by the lack of a model of how these symptoms arise and persist. Adopting the
RDoC approach, we suggest that these symptoms may result from abnormalities in the neural and cognitive
processes that underlie perception, action, and belief formation. Hierarchical predictive coding represents an
explanatory framework that unites function and dysfunction in perception action and belief formation. We
perceive, act, and believe based on our prior experiences, and we update those priors in light of new data and
the prediction errors they elicit. We suggest that hallucinations and delusions form, and are maintained, via
aberrant predictive coding mechanisms that vitiate perception, action and belief.
We will test these hypotheses with a suite of predictive coding measures in a large sample, capturing
variability in symptom severity and duration. We will use functional magnetic resonance imaging (fMRI) during
tasks of perception, action, and belief, electroencephalography to measure mismatch negativity (MMN) to
unexpected perceptual stimuli, and magnetic resonance spectroscopy (MRS) to measure glutamate
concentrations, which may underlie the perturbed MMN and fMRI signals in people with psychosis. We will
bring together behavioral and brain data with formal computational modeling that will allow us to estimate, from
each individual subject's data, the strength of their priors and prediction errors across a hierarchy of
representational richness from simple stimuli through more complex percepts, action choices, and beliefs.
We propose four specific aims: (1) testing whether inappropriately strong top-down perceptual priors cause
hallucinations; (2) testing if delusions are caused by aberrant prediction error signaling; (3) examining whether
psychotic symptoms result from a failure to attribute outcomes to one's own actions appropriately; (4) and
assessing whether glutamate levels are related to predictive coding phenomena assayed in Aims 1-3. In a fifth
exploratory aim, we will examine whether predictive coding abnormalities change over course of illness.
Our overall goal is to provide a computationally rigorous test of the predictive coding account of delusions
and hallucinations. Depending on the outcome, we will either discard the theory, or use it to design and test
treatment approaches more tailored to the specific, and this far unmet, needs of individuals with psychosis.
7。项目摘要
该应用程序对NIMH PAR-16-136做出了响应,“使用NIMH研究领域标准(RDOC)
理解精神病的方法。”精神病符号,例如妄想和幻觉,是
许多患者的治疗性耐药性,与高水平的困扰和障碍有关。治疗
缺乏这些符号如何出现和持续存在的模型,使进步放慢了。采用
RDOC方法,我们建议这些症状可能是由于神经和认知异常引起的
构成了感知,行动和信仰形成的过程。分层预测编码代表
将单位功能和功能障碍在感知行动和信念形成中起作用的剥夺框架。我们
根据我们以前的经验感知,采取行动和相信,我们根据新数据和
他们引起的预测错误。我们建议形成幻觉和妄想,并通过
充实感知,行动和信念的异常预测编码机制。
我们将在大型样本中使用一套预测编码度量来测试这些假设,并捕获
症状严重程度和持续时间的差异。我们将在期间使用功能性磁共振成像(fMRI)
感知,行动和信念的任务,脑电图,以衡量不匹配谈判(MMN)
意外的感知刺激和磁共振光谱(MRS)测量谷氨酸
浓度可能是精神病患者中扰动的MMN和fMRI信号的基础。我们将
通过正式的计算建模将行为和大脑数据汇总在一起,可以从
每个受试者的数据,先验的优势以及在一个层次结构中的预测错误
从简单刺激到更复杂的知觉,行动选择和信仰的代表性丰富。
我们提出了四个具体目的:(1)测试是否不恰当地强大自上而下的感知先验会导致
幻觉; (2)测试是否是由异常预测误差信号引起的; (3)检查是否
精神病症状是由于未能将结果归因于自己的行为而导致的; (4)和
评估谷氨酸水平是否与目标1-3中测定的预测编码现象有关。在五分之一
探索目的,我们将检查预测性编码异常在疾病过程中是否发生变化。
我们的总体目标是对妄想的预测编码说明提供计算严格的测试
和幻觉。根据结果,我们要么丢弃理论,要么使用它来设计和测试
治疗方法更适合精神病患者的特定和未满足的需求。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting to Perceive and Learning When to Learn.
- DOI:10.1016/j.tics.2019.12.005
- 发表时间:2020-04
- 期刊:
- 影响因子:19.9
- 作者:Corlett P
- 通讯作者:Corlett P
Factor one, familiarity and frontal cortex: a challenge to the two-factor theory of delusions.
因素一,熟悉度和额叶皮层:对妄想二因素理论的挑战。
- DOI:10.1080/13546805.2019.1606706
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Corlett,PhilipR
- 通讯作者:Corlett,PhilipR
Phenomenological and Cognitive Features Associated With Auditory Hallucinations in Clinical and Nonclinical Voice Hearers.
- DOI:10.1093/schbul/sbad083
- 发表时间:2023-11-29
- 期刊:
- 影响因子:6.6
- 作者:Gold, James M.;Corlett, Philip R.;Erickson, Molly;Waltz, James A.;August, Sharon;Dutterer, Jenna;Bansal, Sonia
- 通讯作者:Bansal, Sonia
Studying Healthy Psychosislike Experiences to Improve Illness Prediction.
研究类似精神病的健康经历以改善疾病预测。
- DOI:10.1001/jamapsychiatry.2023.0059
- 发表时间:2023
- 期刊:
- 影响因子:25.8
- 作者:Corlett,PhilipR;Bansal,Sonia;Gold,JamesM
- 通讯作者:Gold,JamesM
Aligning Computational Psychiatry With the Hearing Voices Movement: Hearing Their Voices.
将计算精神病学与聆听声音运动结合起来:聆听他们的声音。
- DOI:10.1001/jamapsychiatry.2018.0509
- 发表时间:2018
- 期刊:
- 影响因子:25.8
- 作者:Powers3rd,AlbertR;Bien,Claire;Corlett,PhilipR
- 通讯作者:Corlett,PhilipR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PHILIP CORLETT其他文献
PHILIP CORLETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PHILIP CORLETT', 18)}}的其他基金
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10488386 - 财政年份:2022
- 资助金额:
$ 67.04万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10574998 - 财政年份:2020
- 资助金额:
$ 67.04万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10786777 - 财政年份:2020
- 资助金额:
$ 67.04万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10360479 - 财政年份:2020
- 资助金额:
$ 67.04万 - 项目类别:
5/5 CAPER: Computerized Assessment of Psychosis Risk
5/5 CAPER:精神病风险的计算机化评估
- 批准号:
10576406 - 财政年份:2020
- 资助金额:
$ 67.04万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10704492 - 财政年份:2019
- 资助金额:
$ 67.04万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10263460 - 财政年份:2019
- 资助金额:
$ 67.04万 - 项目类别:
Songmaking in a Group (SING): Music, Hallucinations & Predictive Coding
团体歌曲制作(SING):音乐、幻觉
- 批准号:
10015353 - 财政年份:2019
- 资助金额:
$ 67.04万 - 项目类别:
Predictive Coding as a Framework for Understanding Psychosis
预测编码作为理解精神病的框架
- 批准号:
10064647 - 财政年份:2017
- 资助金额:
$ 67.04万 - 项目类别:
相似国自然基金
衰老破骨前体细胞分泌PDGF-BB在年龄相关认知减退中的机制研究
- 批准号:82201732
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
衰老破骨前体细胞分泌PDGF-BB在年龄相关认知减退中的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于S1P通路探究Amyloid-β在干性年龄相关性黄斑变性中的作用
- 批准号:81870666
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
过去200年来青藏高原西风-季风区典型冰川消融强度对比研究
- 批准号:41801050
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
学龄前儿童“口腔菌群年龄”的遗传基础和过程机制
- 批准号:31600099
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Tele-Sox: A Tele-Medicine solution based on wearables and gamification to prevent Venous thromboembolism in Oncology Geriatric Patients
Tele-Sox:基于可穿戴设备和游戏化的远程医疗解决方案,用于预防肿瘤老年患者的静脉血栓栓塞
- 批准号:
10547300 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别:
Imaging of brain oxygen extraction fraction in vascular contributions to dementia
脑氧提取分数在血管对痴呆症影响中的成像
- 批准号:
10660865 - 财政年份:2023
- 资助金额:
$ 67.04万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control: Administrative Supplement
衰老对主动和反应性认知控制神经编码的影响:行政补充
- 批准号:
10715441 - 财政年份:2022
- 资助金额:
$ 67.04万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control
衰老对主动和反应认知控制的神经编码的影响
- 批准号:
10705622 - 财政年份:2022
- 资助金额:
$ 67.04万 - 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control
衰老对主动和反应认知控制的神经编码的影响
- 批准号:
10462368 - 财政年份:2022
- 资助金额:
$ 67.04万 - 项目类别: