Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
基本信息
- 批准号:10324974
- 负责人:
- 金额:$ 45.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdministratorAdultAlgorithmsAmericanBehavioralClientClinicClinicalClinical ResearchCodeCognitive TherapyCollaborationsCommunitiesCommunity PracticeComplexComputer softwareConsumptionCounselingDataDevelopmentDropoutEffectivenessEngineeringEvaluationFeedbackFocus GroupsFoundationsFutureGoalsGoldGroup InterviewsHealth Insurance Portability and Accountability ActHealth TechnologyHealthcare SystemsHumanInterviewLeadMachine LearningMajor Depressive DisorderMental HealthMental disordersMethodologyMethodsMonitorNational Institute of Mental HealthOnline SystemsOutcomePatientsPerformancePersonsPhasePilot ProjectsPoliciesPractice GuidelinesProfessional PracticeProtocols documentationProviderPsychotherapyRandomizedReadinessReportingResearchResourcesScienceSecureServicesSmall Business Technology Transfer ResearchSoftware ToolsSpeechStandardizationStrategic PlanningSupervisionSystemTechnologyTestingTimeTrainingTraining ProgramsTraining SupportTreatment outcomeUniversitiesVisionWorkaddictionbasebehavioral healthcloud basedcloud platformcognitive enhancementcommercializationcommunity settingcostcost efficientdashboarddesigndigitaldisabilityeffectiveness evaluationeffectiveness implementation studyevidence baseimplementation scienceimprovedinnovationmotivational enhancement therapyphase II trialpractice settingprototypequality assurancerandomized effectiveness trialscale upservice deliveryservices as usualsignal processingskillssoftware as a servicesoftware developmentsoftware systemsspeech processingsymptomatic improvementtechnology developmenttelehealththerapeutic developmenttoolusabilityuser centered design
项目摘要
Each year, millions of Americans receive evidence-based psychotherapies (EBPs) such as cognitive
behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is
no scalable method for evaluating the quality of psychotherapy services. In research settings, human-based
behavioral coding methods are used, but these are time consuming, costly, and rarely used in real-world
clinical settings. Thus, EBP quality and effectiveness is unmeasured and unknown. The current, fast-track
STTR proposal will develop and evaluate an AI-based software system (LyssnCBT) that will automatically
estimate CBT fidelity from an audio recording of a CBT session. Importantly, the current work builds from
Lyssn’s previous, successful work in developing an automated system for evaluating motivational interviewing
(MI), and previous research showing that AI algorithms can accurately estimate CBT fidelity.
Lyssn.io, Inc., (“Lyssn”) is a start-up developing AI-based technologies to support training, supervision,
and quality assurance of evidence-based counseling. Our goal is to develop innovative health technology
solutions that are objective, scalable, and cost efficient. Lyssn offers a HIPAA-compliant, cloud-based platform
for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for MI.
The proposed LyssnCBT tool will build from and be integrated into this core platform. Lyssn is partnering with
Dr. Torrey Creed and the Penn Collaborative, which has a 14+ year track record of gold-standard CBT training
and supervision, including more than 100 community agencies with almost 900 providers. The expertise,
relationships, and amassed data -- more than 8,000 recorded sessions and more than 3,000 rated for CBT
fidelity -- form the clinical foundation for the current research.
Phase I will work from an existing AI-CBT prototype to develop LyssnCBT. Core activities include
user-centered design focus groups and interviews with community mental health (CMH) therapists,
supervisors, and administrators, which will inform the design and development of LyssnCBT. LyssnCBT will be
evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a
field-based usability trial and a stepped-wedge, hybrid implementation-effectiveness randomized trial (N =
1,850 CMH clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client
outcomes, and to reduce client drop-out. Analyses will also examine the hypothesized mechanism of action
underlying LyssnCBT.
The research is strongly aligned with NIMH’s 2020 Strategic Plan and its emphasis on a computational
approach to scaling up treatment delivery and monitoring. Successful execution will provide automated,
scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality
assurance, and providing a core technology foundation that could support a range of EBPs in the future.
每年,数以百万计的美国人接受基于证据的心理治疗(ebp),如认知
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Charles Atkins其他文献
David Charles Atkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Charles Atkins', 18)}}的其他基金
Voice-based AI to scale evaluation of crisis counseling in 988 rollout
基于语音的人工智能可扩展 988 危机咨询评估
- 批准号:
10699048 - 财政年份:2023
- 资助金额:
$ 45.97万 - 项目类别:
Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
- 批准号:
10674481 - 财政年份:2021
- 资助金额:
$ 45.97万 - 项目类别:
ClientBot: A conversational agent that supports skills practice and feedback for Motivational Interviewing for AUD
ClientBot:对话代理,支持 AUD 动机面试的技能练习和反馈
- 批准号:
10449463 - 财政年份:2020
- 资助金额:
$ 45.97万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
8863672 - 财政年份:2015
- 资助金额:
$ 45.97万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
9057931 - 财政年份:2015
- 资助金额:
$ 45.97万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8318917 - 财政年份:2010
- 资助金额:
$ 45.97万 - 项目类别:
Implementation of Technology-Based Evaluation of Motivational Interviewing
基于技术的动机访谈评估的实施
- 批准号:
9334680 - 财政年份:2010
- 资助金额:
$ 45.97万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
7985604 - 财政年份:2010
- 资助金额:
$ 45.97万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8516405 - 财政年份:2010
- 资助金额:
$ 45.97万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8133994 - 财政年份:2010
- 资助金额:
$ 45.97万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 45.97万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 45.97万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 45.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 45.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 45.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)