Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
基本信息
- 批准号:10674481
- 负责人:
- 金额:$ 61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-05 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdministratorAdultAmericanBehavioralClientClinicClinicalClinical ResearchCodeCognitive TherapyCollaborationsCommunitiesCommunity PracticeComplexComputer softwareConsumptionCounselingDataDevelopmentDropoutEducational process of instructingEffectivenessEngineeringEvaluationFeedbackFocus GroupsFoundationsFutureGoalsHealth Insurance Portability and Accountability ActHealth TechnologyHealthcare SystemsHumanImplementation readinessInstitutionInterviewInvestmentsMachine LearningMajor Depressive DisorderMental HealthMental Health ServicesMental disordersMethodologyMethodsMonitorNational Institute of Mental HealthOutcomePatientsPerformancePersonsPhasePilot ProjectsPoliciesPractice GuidelinesProfessional PracticeProtocols documentationProviderPsychotherapyQualifyingRandomizedReadinessReportingResearchResourcesScienceSecureServicesSmall Business Technology Transfer ResearchSoftware ToolsSpeechStandardizationStrategic PlanningSupervisionSystemTechnologyTestingTimeTrainingTraining ProgramsTraining SupportTreatment outcomeUniversitiesVisionWorkaddictionartificial intelligence algorithmbehavioral healthcloud basedcloud platformcognitive enhancementcommercializationcommunity settingcostcost efficientdashboarddesigndigital tooldisabilityeffectiveness evaluationeffectiveness-implementation randomized trialeffectiveness/implementation hybridevidence baseimplementation scienceimprovedinnovationmotivational enhancement therapyphase II trialpractice settingprototypequality assurancescale upservice deliveryservices as usualsignal processingskillssoftware as a servicesoftware developmentsoftware systemsspeech processingsymptomatic improvementtechnology developmenttelehealththerapeutic developmenttoolusabilityuser centered designweb platform
项目摘要
Each year, millions of Americans receive evidence-based psychotherapies (EBPs) such as cognitive
behavioral therapy (CBT) for the treatment of mental and behavioral health problems. Yet, at present, there is
no scalable method for evaluating the quality of psychotherapy services. In research settings, human-based
behavioral coding methods are used, but these are time consuming, costly, and rarely used in real-world
clinical settings. Thus, EBP quality and effectiveness is unmeasured and unknown. The current, fast-track
STTR proposal will develop and evaluate an AI-based software system (LyssnCBT) that will automatically
estimate CBT fidelity from an audio recording of a CBT session. Importantly, the current work builds from
Lyssn’s previous, successful work in developing an automated system for evaluating motivational interviewing
(MI), and previous research showing that AI algorithms can accurately estimate CBT fidelity.
Lyssn.io, Inc., (“Lyssn”) is a start-up developing AI-based technologies to support training, supervision,
and quality assurance of evidence-based counseling. Our goal is to develop innovative health technology
solutions that are objective, scalable, and cost efficient. Lyssn offers a HIPAA-compliant, cloud-based platform
for secure recording, sharing, and reviewing of therapy sessions, which includes AI-generated metrics for MI.
The proposed LyssnCBT tool will build from and be integrated into this core platform. Lyssn is partnering with
Dr. Torrey Creed and the Penn Collaborative, which has a 14+ year track record of gold-standard CBT training
and supervision, including more than 100 community agencies with almost 900 providers. The expertise,
relationships, and amassed data -- more than 8,000 recorded sessions and more than 3,000 rated for CBT
fidelity -- form the clinical foundation for the current research.
Phase I will work from an existing AI-CBT prototype to develop LyssnCBT. Core activities include
user-centered design focus groups and interviews with community mental health (CMH) therapists,
supervisors, and administrators, which will inform the design and development of LyssnCBT. LyssnCBT will be
evaluated for usability and implementation readiness in a final stage of Phase I. Phase II will conduct a
field-based usability trial and a stepped-wedge, hybrid implementation-effectiveness randomized trial (N =
1,850 CMH clients) to evaluate the effectiveness of LyssnCBT to improve therapist CBT skills and client
outcomes, and to reduce client drop-out. Analyses will also examine the hypothesized mechanism of action
underlying LyssnCBT.
The research is strongly aligned with NIMH’s 2020 Strategic Plan and its emphasis on a computational
approach to scaling up treatment delivery and monitoring. Successful execution will provide automated,
scalable CBT fidelity feedback for the first time ever, supporting high-quality training, supervision, and quality
assurance, and providing a core technology foundation that could support a range of EBPs in the future.
每年,数百万美国人接受循证心理治疗(EBP),例如认知
行为疗法(CBT)治疗精神和行为健康问题。但是,目前有
没有评估心理治疗服务质量的可扩展方法。在研究环境中,基于人类
使用了行为编码方法,但是这些方法是耗时,昂贵且很少在现实世界中使用的
临床环境。那是EBP质量和有效性未被计算和未知。当前的快速轨道
STTR建议将开发和评估基于AI的软件系统(LYSSNCBT),该系统将自动
从CBT会话的音频记录中估算CBT保真度。重要的是,当前的工作是由
Lyssn以前成功地开发自动化系统来评估动机面试的工作
(MI)和先前的研究表明,AI算法可以准确估计CBT保真度。
Lyssn.io,Inc。(“ Lyssn”)是一家开发基于AI的技术,以支持培训,监督,
以及基于证据的咨询的质量保证。我们的目标是开发创新的卫生技术
客观,可扩展且具有成本效益的解决方案。 Lyssn提供了符合HIPAA的基于云的平台
用于对治疗课程的安全记录,共享和审查,其中包括AI生成的MI指标。
拟议的LyssnCBT工具将根据并集成到此核心平台中。 Lyssn正在与
托里·克里德(Torrey Creed)博士和宾夕法尼亚(Penn)合作公司,其金标准CBT培训有14年以上的记录
和监督,包括100多个拥有近900个提供商的社区机构。专业知识,
关系和积累数据 - 有8,000多个记录的会话和3,000多个CBT评级
保真度 - 构成当前研究的临床基础。
第一阶段将从现有的AI-CBT原型中工作以开发Lyssncbt。核心活动包括
以用户为中心的设计焦点小组和社区心理健康(CMH)治疗师的访谈,
主管和管理人员将为Lyssncbt的设计和开发提供信息。 Lyssncbt会
在第一阶段的最后阶段评估可用性和实施准备就绪
基于现场的可用性试验和阶梯式wedge,混合实施效应随机试验(n =
1,850 CMH客户端)评估Lyssncbt的有效性,以提高治疗师CBT技能和客户
结果,并减少客户辍学。分析还将检查假设的作用机理
基础lyssncbt。
这项研究与NIMH的2020年战略计划密切相符,并强调计算
扩展治疗交付和监测的方法。成功执行将提供自动化,
有史以来首次可扩展CBT Fidelity反馈,支持高质量的培训,监督和质量
保证,并提供核心技术基金会,以支持将来一系列EBP。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing the quality of cognitive behavioral therapy in community mental health through artificial intelligence generated fidelity feedback (Project AFFECT): a study protocol.
- DOI:10.1186/s12913-022-08519-9
- 发表时间:2022-09-20
- 期刊:
- 影响因子:2.8
- 作者:Creed, Torrey A.;Salama, Leah;Slevin, Roisin;Tanana, Michael;Imel, Zac;Narayanan, Shrikanth;Atkins, David C.
- 通讯作者:Atkins, David C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Charles Atkins其他文献
David Charles Atkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Charles Atkins', 18)}}的其他基金
Voice-based AI to scale evaluation of crisis counseling in 988 rollout
基于语音的人工智能可扩展 988 危机咨询评估
- 批准号:
10699048 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
- 批准号:
10324974 - 财政年份:2021
- 资助金额:
$ 61万 - 项目类别:
ClientBot: A conversational agent that supports skills practice and feedback for Motivational Interviewing for AUD
ClientBot:对话代理,支持 AUD 动机面试的技能练习和反馈
- 批准号:
10449463 - 财政年份:2020
- 资助金额:
$ 61万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
8863672 - 财政年份:2015
- 资助金额:
$ 61万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
9057931 - 财政年份:2015
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8318917 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Implementation of Technology-Based Evaluation of Motivational Interviewing
基于技术的动机访谈评估的实施
- 批准号:
9334680 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
7985604 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8516405 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8133994 - 财政年份:2010
- 资助金额:
$ 61万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrating the Youth Nominated Support Team (YST) with CBT for Black Youth with Acute Suicide Risk
将青年提名支持团队 (YST) 与针对有急性自杀风险的黑人青年的 CBT 相结合
- 批准号:
10573542 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
Evaluating the Implementation and De-Implementation of Pandemic Era SNAP Expansion Policies on Diet and Health: A Mixed Methods Project
评估大流行时代 SNAP 饮食和健康扩展政策的实施和取消实施:混合方法项目
- 批准号:
10832272 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
The Impact of Alzheimer’s Disease and Related Dementias on Nursing Home Care and Quality for Persons with Serious Mental Illness
阿尔茨海默病和相关痴呆症对严重精神疾病患者的疗养院护理和质量的影响
- 批准号:
10803736 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别:
NATIVE RISE-Risk Identification for Suicide and Enhanced care for Native Americans
NATIVE RISE-自杀风险识别和加强对美洲原住民的护理
- 批准号:
10643067 - 财政年份:2023
- 资助金额:
$ 61万 - 项目类别: