ClientBot: A conversational agent that supports skills practice and feedback for Motivational Interviewing for AUD
ClientBot:对话代理,支持 AUD 动机面试的技能练习和反馈
基本信息
- 批准号:10449463
- 负责人:
- 金额:$ 85.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY/ABSTRACT
Millions of Americans are in need of evidence-based counseling, such as motivational interviewing (MI),
for alcohol use disorders (AUDs) each year. To develop competence in an evidence-based practice like MI,
trainees require ample opportunities for practice and immediate, performance-based feedback on the skills that
they are learning. However, this is challenging if not impossible to offer at scale -- to the large number of
providers in need of training. Opportunities for practice typically rely on roleplays with other trainees with
limited experience, and feedback requires either direct supervision from an expert trainer or behavioral coding
from a trained coding team; these are costly, limited, and time consuming. AI-based technology can meet this
need, generating many opportunities for practice, and providing regular, actionable feedback. Many practice
opportunities coupled with rapid, performance-based feedback can enhance and expand training in
evidence-based counseling for AUDs in a scalable and cost-efficient manner.
Lyssn.io?, Inc., (“Lyssn”) is a start-up developing AI-based technologies to support training, supervision,
and quality assurance of evidence-based counseling. Our goal is to develop innovative health technology
solutions that are objective, scalable, and cost efficient. ?Lyssn’s? team includes expertise in natural language
processing, machine learning, user-centered design, software engineering, and clinical expertise in
evidence-based counseling. Previous research demonstrated the basic utility of a prototype conversational
agent (ClientBot) for training counselors. Currently, ClientBot simulates a general mental health client who can
engage in open-ended interaction with trainees and provides immediate, performance-based feedback to
trainees using machine learning.
The current Fast-Track SBIR proposal partners ?Lyssn? with Prevention Research Institute (PRI), who
has a long track-record of training counselors in evidence-based approaches for AUD and currently trains
approximately 1,250 counselors per year. Phase I will adapt ClientBot to an AUD training context, including
understanding PRI training workflows, assessing usability, and accuracy of machine learning based MI
feedback. Phase II will conduct a field-based usability trial and a randomized training trial (N = 200 PRI
trainees) to evaluate the effectiveness of ClientBot on learning of MI skills compared to a wait-list and PRI
training-as-usual. Analyses will also examine the hypothesized mechanisms of behavior change underlying
ClientBot’s MI skills training. The successful execution of this project will break the reliance on role plays with
peers and human judgment for training and performance-based feedback and support commercialization of a
ClientBot product for training of AUD counselors in evidence-based practices.
项目总结/摘要
数以百万计的美国人需要循证咨询,如动机访谈(MI),
酒精使用障碍(AUDs)。为了在像MI这样的循证实践中培养能力,
学员需要有充分的实践机会,并立即获得基于绩效的技能反馈,
他们在学习。然而,这是具有挑战性的,如果不是不可能提供的规模-大量的
需要培训的供应商。实践的机会通常依赖于与其他学员的角色扮演,
经验有限,反馈需要专家培训师的直接监督或行为编码
从一个训练有素的编码团队;这些都是昂贵的,有限的,耗时。基于AI的技术可以满足这一点
需要,创造许多实践机会,并提供定期的,可操作的反馈。许多实践
机会加上快速的、基于绩效的反馈可以加强和扩大培训,
以可扩展和具有成本效益的方式为AUD提供循证咨询。
Lyssn.io?,股份有限公司、(“Lyssn”)是一家开发基于人工智能的技术的初创公司,以支持培训,监督,
和循证咨询的质量保证。我们的目标是开发创新的健康技术
客观、可扩展且经济高效的解决方案。?莱森的?团队包括自然语言专业知识
处理,机器学习,以用户为中心的设计,软件工程和临床专业知识,
循证咨询以前的研究表明,原型会话的基本效用
代理(ClientBot)用于培训辅导员。目前,ClientBot模拟了一个一般的心理健康客户,
与学员进行开放式互动,并提供即时的、基于绩效的反馈,
使用机器学习的学员。
目前的快速通道SBIR提案合作伙伴?莱森预防研究所(PRI),
在AUD循证方法培训辅导员方面有很长的记录,目前正在培训
每年约有1,250名顾问。第一阶段将使ClientBot适应AUD培训环境,包括
了解PRI培训工作流程,评估基于机器学习的MI的可用性和准确性
反馈第二阶段将进行一项基于现场的可用性试验和一项随机培训试验(N = 200 PRI
学员),以评估ClientBot与等待列表和PRI相比在学习MI技能方面的有效性
训练如常。分析还将检查行为改变的假设机制,
ClientBot的MI技能培训。该项目的成功实施将打破对角色扮演的依赖,
同行和人的判断,培训和基于性能的反馈,并支持商业化的一个
ClientBot产品,用于在循证实践中培训AUD咨询师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Charles Atkins其他文献
David Charles Atkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Charles Atkins', 18)}}的其他基金
Voice-based AI to scale evaluation of crisis counseling in 988 rollout
基于语音的人工智能可扩展 988 危机咨询评估
- 批准号:
10699048 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
- 批准号:
10324974 - 财政年份:2021
- 资助金额:
$ 85.52万 - 项目类别:
Enhancing the quality of CBT in community mental health through AI-generated fidelity feedback
通过人工智能生成的保真度反馈提高社区心理健康领域 CBT 的质量
- 批准号:
10674481 - 财政年份:2021
- 资助金额:
$ 85.52万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
8863672 - 财政年份:2015
- 资助金额:
$ 85.52万 - 项目类别:
Using Technology to Scale Up the Evaluation of Motivational Interviewing
利用技术扩大动机访谈的评估
- 批准号:
9057931 - 财政年份:2015
- 资助金额:
$ 85.52万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8318917 - 财政年份:2010
- 资助金额:
$ 85.52万 - 项目类别:
Implementation of Technology-Based Evaluation of Motivational Interviewing
基于技术的动机访谈评估的实施
- 批准号:
9334680 - 财政年份:2010
- 资助金额:
$ 85.52万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
7985604 - 财政年份:2010
- 资助金额:
$ 85.52万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8516405 - 财政年份:2010
- 资助金额:
$ 85.52万 - 项目类别:
Automating Behavioral Coding via Text-Mining and Speech Signal Processing
通过文本挖掘和语音信号处理实现行为编码自动化
- 批准号:
8133994 - 财政年份:2010
- 资助金额:
$ 85.52万 - 项目类别:
相似海外基金
Scaffolding Computational Thinking in Introductory Computer Science through a Conversational Agent
通过对话代理在计算机科学入门中搭建计算思维的脚手架
- 批准号:
2235601 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
Scaffolding Computational Thinking in Introductory Computer Science through a Conversational Agent
通过对话代理在计算机科学入门中搭建计算思维的脚手架
- 批准号:
2236198 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Standard Grant
Neural Conversational Agent for Automated Weight Loss Counseling
用于自动减肥咨询的神经对话代理
- 批准号:
10668094 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Implementing and Scaling the STEADI Fall Prevention Algorithm Using a Conversational Relational Agent for Community-Dwelling Older Adults with and without Mild Cognitive Impairment (MCI).
使用对话关系代理为社区居住的患有或不患有轻度认知障碍 (MCI) 的老年人实施和扩展 STEADI 跌倒预防算法。
- 批准号:
10822816 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Development and integration of an embodied conversational agent for the workplace
工作场所的具体对话代理的开发和集成
- 批准号:
2890121 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Studentship
Developing an Optimized Conversational Agent or "Chatbot" to Facilitate Mental Health Services Use in Individuals with Eating Disorders
开发优化的会话代理或“聊天机器人”以促进饮食失调患者使用心理健康服务
- 批准号:
10730616 - 财政年份:2023
- 资助金额:
$ 85.52万 - 项目类别:
Development and Validation of Cognitive Status Assessments in Older Adults Utilizing Conversational Agent Technology (CAT) Delivered on Smart Displays - the CAUCAT Study
利用智能显示器上提供的会话代理技术 (CAT) 开发和验证老年人认知状态评估 - CAUCAT 研究
- 批准号:
10383284 - 财政年份:2022
- 资助金额:
$ 85.52万 - 项目类别:
Helping people adhere to their varenicline treatment by co-creating a conversational agent: A feasibility study
通过共同创建对话代理来帮助人们坚持伐尼克兰治疗:可行性研究
- 批准号:
486393 - 财政年份:2022
- 资助金额:
$ 85.52万 - 项目类别:
Studentship Programs
Proposal on discussion element-specific deliberation based on autonomous agent facilitation for consensus building in complex society
基于自主代理促进的特定讨论元素审议的提案,以在复杂社会中建立共识
- 批准号:
22K17948 - 财政年份:2022
- 资助金额:
$ 85.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving asthma care through personalised risk assessment and support from a conversational agent
通过个性化风险评估和对话代理的支持改善哮喘护理
- 批准号:
EP/W002477/1 - 财政年份:2022
- 资助金额:
$ 85.52万 - 项目类别:
Research Grant














{{item.name}}会员




