A biophysical assay targeting an essential bacterial gene

针对重要细菌基因的生物物理测定

基本信息

  • 批准号:
    10324513
  • 负责人:
  • 金额:
    $ 29.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-20 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The world is rapidly heading towards a pre-1940’s scenario when it comes to fighting infectious disease. Antimicrobial resistance is a growing problem on a global scale, greatly hampering our abilities to quell worldwide epidemics such as tuberculosis and malaria, as well as the simple staphylococcus infection . The proposed project is significant because unless innovative strategies are developed to produce robust and effective new classes of antibiotics, health care costs will continue to climb and we will completely lose our ability to combat even the most common infection. Current antibiotic treatments originated predominantly from natural products produced by fungi and bacteria that were able to inhibit the growth of other organisms, usually by inhibiting cell wall synthesis or maintenance or by inhibiting protein synthesis. Since penicillin was first isolated by Fleming in 1929, most of the subsequent generations of antibiotics remain very similar to the original natural products, wit h functional groups modified to increase their activity across a broader range of pathogens and decrease their side effect profiles. Oxazolidones, glycopeptides, -lactams, and quinolones show some promise for the future, but Gram-negative bacterial infections still remain problematic. Cases of multidrug-resistant (MDR, resistance to 2-3 classes), extensive drug resistance (XDR, resistance to most classes except colistin or tigecycline) and even pan drug resistance (PDR, resistance to all classes) nosocomial bacterial infections have skyrocketed in recent years, and the emergence of pan drug-resistant isolates are making these infections increasingly difficult to treat. Hospital-acquired infections like these account for up to 4% of all hospital stays in the United States and are incredibly diverse in causative pathogen, antibiotic resistance profile, and severity. A significant cause of nosocomial infection is the Enterobacteriaceae family, which includes Gram-negative bacilli that can be commensal or pathogenic. Enterobacteriaceae have a widespread clinical and economic impact due to the diversity of infections they cause; this family causes many infections such as pneumonia, bloodstream infections (BSIs), urinary tract infections (UTIs), and intra- abdominal infections (IAIs). The World Health Organization (WHO) lists carbapenem-resistant Enterobacteriaceae (CRE) as having a critical need for novel antibiotics on their Priority Pathogens list. Because the mortality of these multi drug-resistant infections is between 30 and 50% and there is such difficulty in finding viable treatments, the need for novel therapeutics for these pathogens must be addressed. Nucleic acids are promising avenues for drug design, both as therapeutics and as targets. Targeting heavily conserved RNA sequences and structures, in bacteria (Enterobacteriaceae), and involved in proliferation and survival of bacteria, is a promising approach. Using our proprietary probes, assays and libraries, we propose to develop a screening assay for an essential gene in Enterobacteriaceae. Here we propose an innovative plan for identification of a novel class of ligands that are specific for an mRNA present in an essential gene in bacteria, and we propose a biophysical screening assay for identifying such ligands. First, as outlined in Specific Aim 1, we will characterize a model nucleic acid domain that will be synthesized commercially and identify specific and high-affinity aminosugar binders. We will then synthesize sequence-specific RNA binding ligands and screen this targeted library of conjugates for sequence-specific binding and gene inhibition. The mechanism of action will be confirmed using a reporter gene assay (Specific Aim 2). A successful application of the approach will allow us to identify and validate lead compounds for inhibition of bacterial growth in Phase II studies.
项目概要 在抗击传染病方面,世界正迅速走向 1940 年代之前的局面。 抗菌素耐药性是全球范围内一个日益严重的问题,极大地阻碍了我们消除耐药性的能力 世界范围内的流行病,例如结核病和疟疾,以及单纯的葡萄球菌感染。 拟议的项目意义重大,因为除非制定创新战略 生产强效有效的新型抗生素,医疗保健成本将继续攀升 我们将完全失去抵抗最常见感染的能力。当前的 抗生素治疗主要源自真菌和细菌产生的天然产物, 能够抑制其他生物体的生长,通常是通过抑制细胞壁的合成或维持 或通过抑制蛋白质合成。自 1929 年弗莱明首次分离出青霉素以来,大多数 后续几代抗生素仍然与原始天然产物非常相似,具有功能性 修改后的群体可提高其对更广泛病原体的活性并减少其副作用 效果概况。恶唑烷酮类、糖肽类、β-内酰胺类和喹诺酮类药物在 未来,但革兰氏阴性细菌感染仍然存在问题。 多重耐药(MDR,耐药2-3类)、广泛耐药(XDR,耐药)病例 除粘菌素或替加环素之外的大多数类别)甚至泛耐药性(PDR,对所有类别的耐药性) 近年来医院细菌感染激增,泛耐药菌出现 分离株使这些感染变得越来越难以治疗。像这样的医院获得性感染 占美国所有住院时间的 4%,并且致病病原体极其多样化, 抗生素耐药性概况和严重程度。肠杆菌科细菌是医院感染的一个重要原因 家族,包括共生或致病的革兰氏阴性杆菌。肠杆菌科有 由于其引起的感染的多样性而产生广泛的临床和经济影响;这个家庭导致 许多感染,如肺炎、血流感染 (BSI)、尿路感染 (UTI) 和体内感染 腹部感染(IAI)。世界卫生组织 (WHO) 列出了碳青霉烯类抗生素耐药性 肠杆菌科 (CRE) 在其优先病原体清单中迫切需要新型抗生素。 因为这些多重耐药感染的死亡率在30%到50%之间,而且有这么大的难度。 在寻找可行的治疗方法时,必须解决对这些病原体的新疗法的需求。 核酸是药物设计的有前途的途径,无论是作为治疗药物还是作为靶标。针对性强 细菌(肠杆菌科)中保守的 RNA 序列和结构,并参与增殖和 细菌的生存,是一种有前途的方法。使用我们专有的探针、检测方法和文库,我们 提议开发一种肠杆菌科必需基因的筛选方法。在这里我们提出一个 鉴定一类新型配体的创新计划,这些配体对存在于 mRNA 中的 mRNA 具有特异性 细菌中必需的基因,我们提出了一种生物物理筛选方法来识别这种基因 配体。首先,如具体目标 1 中所述,我们将表征一个模型核酸结构域,该结构域将 商业合成并鉴定特异性和高亲和力的氨基糖结合剂。然后我们将合成 序列特异性 RNA 结合配体,并筛选该靶向缀合物库的序列特异性 结合和基因抑制。作用机制将通过报告基因测定(具体 目标2)。该方法的成功应用将使我们能够识别和验证先导化合物 II 期研究中抑制细菌生长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

sandra Paige story其他文献

sandra Paige story的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('sandra Paige story', 18)}}的其他基金

Ototoxicity of modified aminoglycosides
修饰氨基糖苷类药物的耳毒性
  • 批准号:
    10663352
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
Ototoxicity of modified aminoglycosides
修饰氨基糖苷类药物的耳毒性
  • 批准号:
    10552427
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
  • 批准号:
    10381446
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
  • 批准号:
    10653818
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay targeting Gyrase RNA
针对旋转酶 RNA 的生物物理测定
  • 批准号:
    10480107
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay targeting Gyrase RNA
针对旋转酶 RNA 的生物物理测定
  • 批准号:
    10608205
  • 财政年份:
    2022
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
  • 批准号:
    10453726
  • 财政年份:
    2021
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
  • 批准号:
    10220711
  • 财政年份:
    2020
  • 资助金额:
    $ 29.45万
  • 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
  • 批准号:
    10080557
  • 财政年份:
    2020
  • 资助金额:
    $ 29.45万
  • 项目类别:
Development of Aminoglycoside-Nucleic Acid Conjugates for Inactivation of an Antibiotic Resistance-Conferring Aminoglycoside Sensing Riboswitch
氨基糖苷-核酸缀合物的开发用于灭活赋予抗生素抗性的氨基糖苷传感核糖开关
  • 批准号:
    9015742
  • 财政年份:
    2015
  • 资助金额:
    $ 29.45万
  • 项目类别:

相似海外基金

Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
  • 批准号:
    9171419
  • 财政年份:
    2016
  • 资助金额:
    $ 29.45万
  • 项目类别:
Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
  • 批准号:
    10581893
  • 财政年份:
    2016
  • 资助金额:
    $ 29.45万
  • 项目类别:
Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
  • 批准号:
    10045624
  • 财政年份:
    2016
  • 资助金额:
    $ 29.45万
  • 项目类别:
Screening of Plasmodium falciparum enoyl-Acyl carrier protein reductase (PfFabI) inhibitors from microbial metabolites for prophylaxis and blocking transmission of malaria
从微生物代谢产物中筛选恶性疟原虫烯酰酰基载体蛋白还原酶 (PfFabI)​​ 抑制剂,用于预防和阻断疟疾传播
  • 批准号:
    26460128
  • 财政年份:
    2014
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanism-based crosslinkers of acyl carrier protein dehydratase
基于机制的酰基载体蛋白脱水酶交联剂
  • 批准号:
    24810015
  • 财政年份:
    2012
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
  • 批准号:
    155331-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
  • 批准号:
    155331-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
  • 批准号:
    155331-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
  • 批准号:
    155331-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
  • 批准号:
    155331-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 29.45万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了