A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
基本信息
- 批准号:10453726
- 负责人:
- 金额:$ 19.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-20 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Abdominal InfectionAcyl Carrier ProteinAddressAffinityAmino SugarsAminoglycosidesAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAntisense OligonucleotidesAwarenessBacillusBacteriaBacterial Antibiotic ResistanceBacterial GenesBacterial InfectionsBase SequenceBindingBiological AssayBiophysicsBostonCell WallCell membraneCellsCessation of lifeChemicalsChemistryClinicalColistinCommunicable DiseasesDataDevelopmentDrug DesignDrug TargetingDrug resistanceEnterobacteriaceaeEnzymesEpidemicEscherichia coliEssential GenesFamilyFatty AcidsFluorescenceFutureGene TargetingGenerationsGenesGlycopeptidesGram-Negative BacteriaGram-Negative Bacterial InfectionsGrowthHIVHealth Care CostsHigh Pressure Liquid ChromatographyInfectionInstitute of Medicine (U.S.)Intra-abdominalLactamsLeadLegal patentLengthLength of StayLettersLibrariesLigand BindingLigandsLipidsMaintenanceMalariaMembraneMessenger RNAMicroRNAsModelingMorbidity - disease rateMulti-Drug ResistanceNatural ProductsNosocomial InfectionsNucleic AcidsOrganismParasitesPathogenesisPathogenicityPenicillinsPeptidesPersonsPharmaceutical PreparationsPhasePlayPneumoniaProtein BiosynthesisQuinolonesRNARNA BindingRNA InterferenceRNA SequencesRapid screeningRegulationReporterReporter GenesReportingResistanceResistance profileRibosomesSepsisSeveritiesSolidStaphylococcal InfectionsStructureSystemTherapeuticToxic effectTuberculosisUnited StatesUnited States National Academy of SciencesUrinary tract infectionVirusWitWorkWorld Health Organizationantibiotic resistant infectionsantimicrobialcarbapenem-resistant Enterobacteriaceaecombatcosteconomic impactexperimental studyextensive drug resistancefightingfunctional groupfungusimmunogenicimprovedinnovationinterestlipid biosynthesismicroorganismmortalitynovelnovel antibiotic classnovel strategiesnovel therapeuticspathogenpathogenic bacteriaphase 2 studypriority pathogenscreeningside effecttargeted agenttargeted deliverytigecyclineuptake
项目摘要
PROJECT SUMMARY
The world is rapidly heading towards a pre-1940’s scenario when it comes to fighting infectious disease.
Antimicrobial resistance is a growing problem on a global scale, greatly hampering our abilities to quell
worldwide epidemics such as tuberculosis and malaria, as well as the simple staphylococcus infection .
The proposed project is significant because unless innovative strategies are developed to
produce robust and effective new classes of antibiotics, health care costs will continue to climb
and we will completely lose our ability to combat even the most common infection. Current
antibiotic treatments originated predominantly from natural products produced by fungi and bacteria that
were able to inhibit the growth of other organisms, usually by inhibiting cell wall synthesis or maintenance
or by inhibiting protein synthesis. Since penicillin was first isolated by Fleming in 1929, most of the
subsequent generations of antibiotics remain very similar to the original natural products, wit h functional
groups modified to increase their activity across a broader range of pathogens and decrease their side
effect profiles. Oxazolidones, glycopeptides, -lactams, and quinolones show some promise for the
future, but Gram-negative bacterial infections still remain problematic.
Cases of multidrug-resistant (MDR, resistance to 2-3 classes), extensive drug resistance (XDR, resistance to
most classes except colistin or tigecycline) and even pan drug resistance (PDR, resistance to all classes)
nosocomial bacterial infections have skyrocketed in recent years, and the emergence of pan drug-resistant
isolates are making these infections increasingly difficult to treat. Hospital-acquired infections like these
account for up to 4% of all hospital stays in the United States and are incredibly diverse in causative pathogen,
antibiotic resistance profile, and severity. A significant cause of nosocomial infection is the Enterobacteriaceae
family, which includes Gram-negative bacilli that can be commensal or pathogenic. Enterobacteriaceae have
a widespread clinical and economic impact due to the diversity of infections they cause; this family causes
many infections such as pneumonia, bloodstream infections (BSIs), urinary tract infections (UTIs), and intra-
abdominal infections (IAIs). The World Health Organization (WHO) lists carbapenem-resistant
Enterobacteriaceae (CRE) as having a critical need for novel antibiotics on their Priority Pathogens list.
Because the mortality of these multi drug-resistant infections is between 30 and 50% and there is such difficulty
in finding viable treatments, the need for novel therapeutics for these pathogens must be addressed.
Nucleic acids are promising avenues for drug design, both as therapeutics and as targets. Targeting heavily
conserved RNA sequences and structures, in bacteria (Enterobacteriaceae), and involved in proliferation and
survival of bacteria, is a promising approach. Using our proprietary probes, assays and libraries, we
propose to develop a screening assay for an essential gene in Enterobacteriaceae. Here we propose an
innovative plan for identification of a novel class of ligands that are specific for an mRNA present in
an essential gene in bacteria, and we propose a biophysical screening assay for identifying such
ligands. First, as outlined in Specific Aim 1, we will characterize a model nucleic acid domain that will be
synthesized commercially and identify specific and high-affinity aminosugar binders. We will then synthesize
sequence-specific RNA binding ligands and screen this targeted library of conjugates for sequence-specific
binding and gene inhibition. The mechanism of action will be confirmed using a reporter gene assay (Specific
Aim 2). A successful application of the approach will allow us to identify and validate lead compounds for
inhibition of bacterial growth in Phase II studies.
项目总结
在抗击传染病方面,世界正迅速走向1940年前的S情景。
抗菌素耐药性在全球范围内是一个日益严重的问题,极大地阻碍了我们平息的能力
世界范围内的流行病,如结核病和疟疾,以及简单的葡萄球菌感染。
拟议的项目意义重大,因为除非制定创新的战略来
生产出强健有效的新型抗生素,医疗成本将继续攀升
我们将完全失去与最常见的感染作斗争的能力。当前
抗生素治疗主要来自真菌和细菌产生的天然产品,
能够抑制其他生物的生长,通常是通过抑制细胞壁的合成或维持
或者通过抑制蛋白质合成。自从1929年弗莱明首次分离出青霉素以来,大多数青霉素
后续几代抗生素仍然与最初的天然产品非常相似,具有功能性
修改后的组在更广泛的病原体范围内增强其活性,并减少其侧面
效果配置文件。恶唑烷酮、糖肽、-内酰胺类和喹诺酮类药物显示出一些前景
未来,但革兰氏阴性细菌感染仍然存在问题。
多药耐药(MDR,对2-3类耐药)、广泛耐药(XDR,对
除粘菌素或替吉环素外的大多数类别),甚至泛耐药(PDR,对所有类别的耐药性)
近年来,医院内细菌感染激增,并出现了PAN耐药
分离株使这些感染变得越来越难以治疗。这样的医院获得性感染
占美国住院总人数的4%,其致病病原体极其多样,
抗生素耐药性概况和严重程度。引起医院感染的一个重要原因是肠杆菌科细菌。
家庭,其中包括革兰氏阴性杆菌,可以共生或致病。肠杆菌科有
由于它们引起的感染的多样性而造成的广泛的临床和经济影响;这个家庭引起
许多感染,如肺炎、血液感染(BSI)、尿路感染(UTI)和
腹部感染(IAIs)。世界卫生组织(WHO)列出了对碳青霉烯耐药的名单
肠杆菌科(CRE)在其优先病原菌名单上迫切需要新的抗生素。
因为这些多重耐药感染的死亡率在30%到50%之间,存在这样的困难
在寻找可行的治疗方法时,必须解决对这些病原体的新疗法的需要。
核酸是药物设计的很有前途的途径,既是治疗药物,也是靶点。大举瞄准
保守的RNA序列和结构,在细菌(肠杆菌科)中,并参与增殖和
细菌的生存,是一种很有前途的方法。使用我们专有的探针、分析和库,我们
建议建立肠杆菌科必需基因的筛选方法。在这里,我们提出一种
确定一类新的配体的创新计划,这些配体是存在于
细菌中的一种必需基因,我们提出了一种生物物理筛选方法来鉴定这种基因
配基。首先,正如在特定目标1中概述的那样,我们将描述一个模型核酸结构域,它将是
商业化合成并鉴定特定和高亲和力的氨基糖结合剂。然后我们将合成
序列特异的RNA结合配体,并筛选序列特异的靶向连接物文库
结合和基因抑制。作用机制将使用报告基因分析(特异性)来确认
目标2)。该方法的成功应用将使我们能够识别和验证先导化合物
抑制细菌生长的第二阶段研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
sandra Paige story其他文献
sandra Paige story的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('sandra Paige story', 18)}}的其他基金
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10381446 - 财政年份:2022
- 资助金额:
$ 19.4万 - 项目类别:
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10653818 - 财政年份:2022
- 资助金额:
$ 19.4万 - 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
- 批准号:
10324513 - 财政年份:2021
- 资助金额:
$ 19.4万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10220711 - 财政年份:2020
- 资助金额:
$ 19.4万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10080557 - 财政年份:2020
- 资助金额:
$ 19.4万 - 项目类别:
Development of Aminoglycoside-Nucleic Acid Conjugates for Inactivation of an Antibiotic Resistance-Conferring Aminoglycoside Sensing Riboswitch
氨基糖苷-核酸缀合物的开发用于灭活赋予抗生素抗性的氨基糖苷传感核糖开关
- 批准号:
9015742 - 财政年份:2015
- 资助金额:
$ 19.4万 - 项目类别:
相似海外基金
Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
- 批准号:
9171419 - 财政年份:2016
- 资助金额:
$ 19.4万 - 项目类别:
Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
- 批准号:
10581893 - 财政年份:2016
- 资助金额:
$ 19.4万 - 项目类别:
Functional Hybrid Natural Product Synthases by Tracking Acyl Carrier Protein Binding and Conformational Dynamics
通过跟踪酰基载体蛋白结合和构象动力学进行功能性杂化天然产物合成
- 批准号:
10045624 - 财政年份:2016
- 资助金额:
$ 19.4万 - 项目类别:
Screening of Plasmodium falciparum enoyl-Acyl carrier protein reductase (PfFabI) inhibitors from microbial metabolites for prophylaxis and blocking transmission of malaria
从微生物代谢产物中筛选恶性疟原虫烯酰酰基载体蛋白还原酶 (PfFabI) 抑制剂,用于预防和阻断疟疾传播
- 批准号:
26460128 - 财政年份:2014
- 资助金额:
$ 19.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism-based crosslinkers of acyl carrier protein dehydratase
基于机制的酰基载体蛋白脱水酶交联剂
- 批准号:
24810015 - 财政年份:2012
- 资助金额:
$ 19.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
- 批准号:
155331-2008 - 财政年份:2012
- 资助金额:
$ 19.4万 - 项目类别:
Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
- 批准号:
155331-2008 - 财政年份:2011
- 资助金额:
$ 19.4万 - 项目类别:
Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
- 批准号:
155331-2008 - 财政年份:2010
- 资助金额:
$ 19.4万 - 项目类别:
Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
- 批准号:
155331-2008 - 财政年份:2009
- 资助金额:
$ 19.4万 - 项目类别:
Discovery Grants Program - Individual
Structure and function of acyl carrier protein
酰基载体蛋白的结构和功能
- 批准号:
155331-2008 - 财政年份:2008
- 资助金额:
$ 19.4万 - 项目类别:
Discovery Grants Program - Individual