A biophysical assay targeting Gyrase RNA
针对旋转酶 RNA 的生物物理测定
基本信息
- 批准号:10608205
- 负责人:
- 金额:$ 22.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-11 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Abdominal InfectionAddressAffinityAmino SugarsAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsAntimicrobial ResistanceAntisense OligonucleotidesAwarenessBacillusBacteriaBacterial Antibiotic ResistanceBacterial InfectionsBase SequenceBindingBiological AssayBiophysicsBostonCell WallCell membraneCellsCessation of lifeChemistryClinicalCodeColistinCommunicable DiseasesDNADNA GyraseDNA biosynthesisDataDevelopmentDrug DesignDrug resistanceEnterobacteriaceaeEnzymesEpidemicEscherichia coliEssential GenesFamilyFluorescenceFutureGene TargetingGenerationsGenesGenetic RecombinationGenetic TranscriptionGlycopeptidesGram-Negative BacteriaGram-Negative Bacterial InfectionsGrowthHIVHealth Care CostsHigh Pressure Liquid ChromatographyHybridsInfectionInstitute of Medicine (U.S.)Intra-abdominalKlebsiellaLactamsLeadLegal patentLengthLength of StayLibrariesLigand BindingLigandsMaintenanceMalariaMarketingMessenger RNAMicroRNAsMicrobial Drug ResistanceModelingMorbidity - disease rateMulti-Drug ResistanceNatural ProductsNosocomial InfectionsNucleic AcidsOrganismParasitesPathogenicityPenetrationPenicillinsPeptide Nucleic AcidsPeptidesPersonsPharmaceutical PreparationsPhasePlayPneumoniaProliferatingProtein Synthesis InhibitionQuinolonesRNARNA BindingRNA InterferenceRNA SequencesRNA chemical synthesisRapid screeningReporterReporter GenesResistanceResistance profileRibosomesSalmonellaSepsisSeveritiesShigellaSolidStaphylococcal InfectionsStructureSystemTherapeuticTopoisomerase IIToxic effectTranslationsTuberculosisUnited StatesUnited States National Academy of SciencesUrinary tract infectionVirusWitWorkWorld Health Organizationalternative treatmentanalogantibiotic resistant infectionsantimicrobialantimicrobial drugcarbapenem-resistant Enterobacteriaceaecombatcosteconomic impactexperimental studyextensive drug resistancefightingfunctional groupfungusimmunogenicimprovedinnovationinterestmembermicroorganismmortalitynovelnovel antibiotic classnovel strategiesnovel therapeuticsoff-target sitepathogenphase 2 studypriority pathogenscreeningside effecttargeted agenttigecyclineuptake
项目摘要
PROJECT SUMMARY
The world is rapidly heading towards a pre-1940’s scenario when it comes to fighting infectious disease.
Antimicrobial resistance is a growing problem on a global scale, greatly hampering our abilities to quell
worldwide epidemics such as tuberculosis and malaria, as well as the simple staphylococcus infection .
The proposed project is significant because unless innovative strategies are developed to
produce robust and effective new classes of antibiotics, health care costs will continue to climb
and we will completely lose our ability to combat even the most common infection. Current
antibiotic treatments originated predominantly from natural products produced by fungi and bacteria that
were able to inhibit the growth of other organisms, usually by inhibiting cell wall synthesis or maintenance
or by inhibiting protein synthesis. Since penicillin was first isolated by Fleming in 1929, most of the
subsequent generations of antibiotics remain very similar to the original natural products, wit h functional
groups modified to increase their activity across a broader range of pathogens and decrease their side
effect profiles. Oxazolidones, glycopeptides, -lactams, and quinolones show some promise for the
future, but Gram-negative bacterial infections still remain problematic.
Cases of multidrug-resistant (MDR, resistance to 2-3 classes), extensive drug resistance (XDR, resistance to
most classes except colistin or tigecycline) and even pan drug resistance (PDR, resistance to all classes)
nosocomial bacterial infections have skyrocketed in recent years, and the emergence of pan drug-resistant
isolates are making these infections increasingly difficult to treat. Hospital-acquired infections like these
account for up to 4% of all hospital stays in the United States and are incredibly diverse in causative pathogen,
antibiotic resistance profile, and severity. A significant cause of nosocomial infection is the Enterobacteriaceae
family, which includes Gram-negative bacilli that can be commensal or pathogenic. Enterobacteriaceae have
a widespread clinical and economic impact due to the diversity of infections they cause; this family causes
many infections such as pneumonia, bloodstream infections (BSIs), urinary tract infections (UTIs), and intra-
abdominal infections (IAIs). The World Health Organization (WHO) lists carbapenem-resistant
Enterobacteriaceae (CRE) as having a critical need for novel antibiotics on their Priority Pathogens list.
Because the mortality of these multi drug-resistant infections is between 30 and 50% and there is such difficulty
in finding viable treatments, the need for novel therapeutics for these pathogens must be addressed.
Nucleic acids are promising avenues for drug design, both as therapeutics and as targets. Targeting heavily
conserved RNA sequences and structures, in bacteria (Enterobacteriaceae), and involved in proliferation and
survival of bacteria, is a promising approach. Using our proprietary probes, assays and libraries, we
propose to develop a screening assay for an essential gene in Enterobacteriaceae. Here we propose an
innovative plan for identification of a novel class of ligands that are specific for an mRNA present in
an essential gene in bacteria, and we propose a biophysical screening assay for identifying such
ligands. First, as outlined in Specific Aim 1, we will characterize a model nucleic acid domain that will be
synthesized commercially and identify specific and high-affinity aminosugar binders. We will then synthesize
sequence-specific RNA binding ligands and screen this targeted library of conjugates for sequence-specific
binding and gene inhibition. The mechanism of action will be confirmed using a reporter gene assay (Specific
Aim 2). A successful application of the approach will allow us to identify and validate lead compounds for
inhibition of bacterial growth in Phase II studies.
项目摘要
在抗击传染病方面,世界正迅速走向1940年前的局面。
抗生素耐药性是全球范围内日益严重的问题,极大地阻碍了我们平息
世界范围的流行病,如结核病和疟疾,以及简单的疟疾感染。
拟议的项目意义重大,因为除非制定创新战略,
生产强大而有效的新型抗生素,医疗保健成本将继续攀升
我们将完全丧失抵抗最常见传染病的能力。电流
抗生素治疗主要来源于真菌和细菌产生的天然产物,
能够抑制其他生物的生长,通常是通过抑制细胞壁的合成或维持
或通过抑制蛋白质合成。自从1929年弗莱明首次分离出青霉素以来,
随后的几代抗生素仍然非常类似于原始的天然产物,
修改组,以增加其对更广泛的病原体的活性,并减少其侧
影响剖面。恶唑烷酮、糖肽、β-内酰胺和喹诺酮类药物显示出一些前景,
未来,但革兰氏阴性细菌感染仍然存在问题。
多药耐药(MDR,耐2-3类)、广泛耐药(XDR,耐
大多数类别,除了粘菌素或替加环素),甚至泛耐药(PDR,耐所有类别)
近年来,医院内细菌感染激增,
分离株使这些感染越来越难以治疗。像这样的医院获得性感染
占美国所有住院人数的4%,并且致病病原体的多样性令人难以置信,
抗生素耐药性特征和严重程度。医院感染的一个重要原因是肠杆菌科
革兰氏阴性杆菌科,包括革兰氏阴性杆菌,可以是细菌性或致病性的。肠杆菌科有
由于它们引起的感染的多样性,广泛的临床和经济影响;这个家庭引起
许多感染,如肺炎、血流感染(BSI)、尿路感染(UTI)和肠内感染。
腹腔感染(IAI)。世界卫生组织(WHO)将耐碳青霉烯类药物
肠杆菌科(CRE)作为其优先病原体列表中对新型抗生素的迫切需求。
因为这些多重耐药感染的死亡率在30%到50%之间,
在寻找可行的治疗方法时,必须解决对这些病原体的新疗法的需求。
核酸是药物设计的有希望的途径,既作为治疗剂又作为靶点。重点瞄准
保守的RNA序列和结构,在细菌(肠杆菌科),并参与增殖和
细菌的存活,是一种很有前途的方法。使用我们专有的探针、分析和文库,
建议开发一种筛选肠杆菌科中必需基因的方法。在这里,我们提出一个
用于鉴定一类新配体的创新计划,所述配体对存在于
细菌中的一个必需基因,我们提出了一种生物物理筛选试验,用于识别这种基因,
配体。首先,如在具体目标1中所概述的,我们将表征将被分析的模型核酸结构域。
商业合成并鉴定特异性和高亲和力氨基糖结合剂。然后我们将合成
序列特异性RNA结合配体,并筛选该靶向缀合物文库的序列特异性
结合和基因抑制。作用机制将使用报告基因测定法(特异性
目标2)。该方法的成功应用将使我们能够识别和验证先导化合物
在II期研究中抑制细菌生长。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
sandra Paige story其他文献
sandra Paige story的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('sandra Paige story', 18)}}的其他基金
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10381446 - 财政年份:2022
- 资助金额:
$ 22.65万 - 项目类别:
A biophysical assay targeting SARS CoV-2 RNA
针对 SARS CoV-2 RNA 的生物物理检测
- 批准号:
10653818 - 财政年份:2022
- 资助金额:
$ 22.65万 - 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
- 批准号:
10453726 - 财政年份:2021
- 资助金额:
$ 22.65万 - 项目类别:
A biophysical assay targeting an essential bacterial gene
针对重要细菌基因的生物物理测定
- 批准号:
10324513 - 财政年份:2021
- 资助金额:
$ 22.65万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10220711 - 财政年份:2020
- 资助金额:
$ 22.65万 - 项目类别:
A biophysical assay for RNA based resistance
基于 RNA 的耐药性的生物物理测定
- 批准号:
10080557 - 财政年份:2020
- 资助金额:
$ 22.65万 - 项目类别:
Development of Aminoglycoside-Nucleic Acid Conjugates for Inactivation of an Antibiotic Resistance-Conferring Aminoglycoside Sensing Riboswitch
氨基糖苷-核酸缀合物的开发用于灭活赋予抗生素抗性的氨基糖苷传感核糖开关
- 批准号:
9015742 - 财政年份:2015
- 资助金额:
$ 22.65万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 22.65万 - 项目类别:
Research Grant