Using Machine Learning to find a life saving needle in a haystack of children's emergencies
利用机器学习在儿童紧急情况的大海捞针中找到救生针
基本信息
- 批准号:10341239
- 负责人:
- 金额:$ 70.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAdultAdverse eventAlgorithmsAmericanAmerican Heart AssociationCaringCessation of lifeChildChild CareChild HealthChildhoodClinicalCollectionComplexComputing MethodologiesDataData SetDetectionDevelopmentElementsEmergency CareEmergency SituationEmergency medical serviceEncapsulatedEnvironmentEpidemiologyEvaluationEventFoundationsFutureGoalsGoldGuidelinesHealthHealthcare SystemsHeart ArrestHospitalsIncidenceInformaticsInformation SystemsInfrastructureInjuryInterdisciplinary StudyKnowledgeLearningLifeLogicMachine LearningManualsMedicalMedical ErrorsMedicineMethodsModelingModernizationMonitorMorbidity - disease rateNatural Language ProcessingOntologyOregonOutcomeOutputPediatric HospitalsPlayPopulationPre-hospitalization careProceduresProviderQuality of CareRecordsResearchResearch PersonnelRoleSafetySamplingSavingsScientistSecureStructureSupervisionSurvival RateSystemTechniquesTestingTextTranscendUnited StatesUtahVisualization softwareWorkbasecare costscare outcomescare systemscomputerized toolsdata visualizationdeep learningeffective therapyevidence baseexperiencehealth care deliveryhigh riskimprovedmortalitymultidisciplinarynovelout-of-hospital cardiac arrestpatient safetypediatric emergencypediatric patientspoint of carepreventprospectiverelating to nervous systemscreeningsequence learningservice providersstructured datatooltrauma care
项目摘要
SUMMARY
Adverse safety events (ASEs) resulting from medical care are a leading cause of preventable injury and death
in the United States. The National Academy of Medicine recommends that hospital and Emergency Medical
Services (EMS) systems “implement evidence-based approaches to reduce errors in emergency and trauma
care for children,” but acknowledges that implementation is limited by the “paucity of high-quality data on the
epidemiology of medical errors in children, particularly within the emergency care system.” Our research team
developed and validated an EMS chart review tool to identify ASEs in the care of children and has begun to
describe the epidemiology of these events. We have identified pediatric out-of-hospital cardiac arrest (OHCA)
as a particularly high-risk condition for ASEs and poor survival. EMS plays a critical role in the health and
outcomes of Americans during cardiac arrests. Receipt of effective treatment in the first few minutes of cardiac
arrest can double or triple survival. However, while survival from adult OHCAs and in-hospital pediatric OHCAs
have both increased significantly over the last 10-15 years, survival from pediatric OHCA remains largely
unchanged. We focus on identifying preventable ASEs occurring over the entire episode of OHCA, recognized
to be a major contributor to mortality and morbidity. The status quo, manual chart reviews, considered the gold
standard for evaluating safety and quality of care, are costly and labor-intensive. The main goal of this proposal
is to computationally detect ASEs associated with pediatric OHCA at a population level from electronic EMS
charts through the following Study Aims: Aim 1. Identify adverse safety events in the prehospital care of
children with OHCA via rules- and regression-based computational processing of structured data in pediatric
EMS charts. Aim 2. Extract cardiac arrest-related indicators from EMS chart narrative text using deep learning
NLP techniques and weak supervision techniques to augment the rules-and regression--based automatic
screening of EMS charts. Aim 3. Prospectively demonstrate the scalability of automated detection of ASEs in
OHCA at the scale of statewide populations. This proposal leverages the strengths of an experienced
multidisciplinary research team that includes informaticians and clinician-scientists with expertise in pediatric
patient safety and American Heart Association Guideline development. Successful completion of the project
aims will create the foundational elements of an automated tool capable of screening EMS charts on a large
scale to identify, monitor, and ultimately mitigate preventable pediatric prehospital patient safety events.
Additionally, the computational tools and annotated dataset created in the course of this project will serve as
valuable infrastructure to support future clinical and computational research.
摘要
由医疗护理引起的不良安全事件是可预防的伤害和死亡的主要原因
在美国。美国国家医学科学院建议医院和急救医疗
服务(EMS)系统“实施基于证据的方法,以减少急诊和创伤中的错误
但承认,由于缺乏关于儿童的高质量数据,实施受到限制。
儿童医疗差错的流行病学,特别是在紧急护理系统中。我们的研究团队
开发并验证了EMS图表审查工具,以确定儿童护理中的ASE,并已开始
描述这些事件的流行病学。我们发现了儿科院外心脏骤停(UchA)
作为自闭症和低存活率的特别高风险条件。EMS在健康和健康方面发挥着关键作用
美国人在心脏骤停期间的结局。在心脏病发作的头几分钟内接受有效治疗
逮捕可以使存活率增加一倍或三倍。然而,虽然成人OHCA和住院儿童OHCA的存活率
在过去的10-15年里,两者的存活率都有了显著的提高,但在很大程度上,儿科uchA的存活率仍然存在
保持不变。我们的重点是确定在整个uchA事件中发生的可预防的AS,公认的
成为死亡率和发病率的主要贡献者。现状,手工海图回顾,被认为是黄金
评估安全和护理质量的标准是昂贵和劳动密集型的。这项提案的主要目标是
是从电子EMS在人口水平上计算检测与儿科uchA相关的ASE
通过以下研究目标的图表:目标1.确定院前护理中的不良安全事件
通过基于规则和回归的儿科结构化数据的计算处理
EMS图表。目的2.利用深度学习从EMS图表叙事文本中提取心脏骤停相关指标
NLP技术和弱监督技术,以增强基于规则和回归的自动化
EMS图表的筛选。目标3.前瞻性地展示ASES自动检测的可扩展性
在全州范围内的人口规模上。这项建议充分利用了一位经验丰富的
多学科研究团队,包括信息学家和临床医生-具有儿科专业知识的科学家
患者安全和美国心脏协会指南的制定。项目圆满完成
AIMS将创建能够大规模筛选EMS图表的自动化工具的基本要素
规模以识别、监测并最终缓解可预防的儿科院前患者安全事件。
此外,在本项目过程中创建的计算工具和带注释的数据集将用作
有价值的基础设施,支持未来的临床和计算研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEANNE-MARIE GUISE其他文献
JEANNE-MARIE GUISE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEANNE-MARIE GUISE', 18)}}的其他基金
Using Machine Learning to find a life saving needle in a haystack of children's emergencies
利用机器学习在儿童紧急情况的大海捞针中找到救生针
- 批准号:
10815094 - 财政年份:2022
- 资助金额:
$ 70.29万 - 项目类别:
NW Center of Excellence & K12 in Patient Centered Learning Health Systems Science
西北卓越中心
- 批准号:
9788226 - 财政年份:2018
- 资助金额:
$ 70.29万 - 项目类别:
Reducing Disparities for Children in Rural Emergency Resuscitation (RESCU-ER)
减少农村紧急复苏中儿童的差距 (RESCU-ER)
- 批准号:
10585863 - 财政年份:2018
- 资助金额:
$ 70.29万 - 项目类别:
NW Center of Excellence & K12 in Patient Centered Learning Health Systems Science
西北卓越中心
- 批准号:
10015294 - 财政年份:2018
- 资助金额:
$ 70.29万 - 项目类别:
Oregon Patient Centered Outcomes Research K12 Program
俄勒冈州以患者为中心的结果研究 K12 计划
- 批准号:
8846577 - 财政年份:2014
- 资助金额:
$ 70.29万 - 项目类别:
Simulation to address gender-based differences in leadership, teamwork, and safety
通过模拟解决领导力、团队合作和安全方面的性别差异
- 批准号:
8930123 - 财政年份:2014
- 资助金额:
$ 70.29万 - 项目类别:
Simulation to address gender-based differences in leadership, teamwork, and safety
通过模拟解决领导力、团队合作和安全方面的性别差异
- 批准号:
9139880 - 财政年份:2014
- 资助金额:
$ 70.29万 - 项目类别:
Oregon Patient Centered Outcomes Research K12 Program
俄勒冈州以患者为中心的结果研究 K12 计划
- 批准号:
8701865 - 财政年份:2014
- 资助金额:
$ 70.29万 - 项目类别:
Epidemiology of Preventable Safety Events in Prehospital EMS for Children
儿童院前急救中可预防安全事件的流行病学
- 批准号:
8121589 - 财政年份:2010
- 资助金额:
$ 70.29万 - 项目类别:
Epidemiology of Preventable Safety Events in Prehospital EMS for Children
儿童院前急救中可预防安全事件的流行病学
- 批准号:
8300252 - 财政年份:2010
- 资助金额:
$ 70.29万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 70.29万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 70.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)