Identifying genetic predictors of outcomes for Veterans with chronic low back pain and lumbosacral spinal disorders
确定患有慢性腰痛和腰骶脊柱疾病的退伍军人结果的遗传预测因素
基本信息
- 批准号:10641238
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AreaBiologicalCaringCharacteristicsChronicChronic low back painClinicalClinical DataCompensationCoronary ArteriosclerosisDataDevelopmentDiagnosisDiscriminationElectronic Health RecordElectronic Medical Records and Genomics NetworkFailureFutureGenetic RiskGenomicsHealthHealthcareIndividualLinkLow Back PainMeta-AnalysisModelingNeuropathyOperative Surgical ProceduresOutcomePain managementParticipantPatient-Focused OutcomesPatientsPharmacy facilityPhasePhysical therapyPrognosisROC CurveRecurrenceRehabilitation therapyResearchResourcesRiskRoleSamplingSigns and SymptomsSpinal DiseasesSpinal ManipulationSpinal StenosisSubgroupSurgical DecompressionSyndromeTreatment outcomeValidationVariantVertebral columnVeteransVisitbiobankcare outcomesdisabilityelectronic health informationgenetic predictorsgenome wide association studygenome-widegenomic datahigh riskimprovedindividualized medicinemilitary veteranmodel developmentoutcome predictionpatient subsetspersonalized approachpolygenic risk scorepredictive modelingprognostic modelprognostic valueprogramsprogression riskrare mendelian disorderrisk stratificationyears lived with disability
项目摘要
Low back pain (LBP) is the #1 contributor to disability globally and the 4th most prevalent reason for new VA
disability compensation. The societal burden of LBP is largely attributed to 2 distinct subgroups of patients: (1)
those who use healthcare resources for chronic (persistent or recurrent) LBP; and (2) those undergoing
surgical treatments for specific spine-related conditions associated with LBP and/or neuropathic
symptoms/signs, such as lumbosacral radicular syndrome (LSRS) and symptomatic lumbar spinal stenosis
(SLSS). Personalized approaches to improve the efficiency of care and treatment outcomes for these
subgroups of Veterans have the potential to reduce the burden of LBP for the Veteran population. Stratified
care for LBP based on prognosis showed early promise when linked to clinical decisions regarding physical
therapy. More robust effects from stratified care may come through improving the feasibility and prognostic
ability of risk stratification or linking risk stratification to clinical decisions regarding treatments with large
magnitude effects in subgroups of patients with LBP (e.g., decompression surgery for LSRS). The proposed
research will apply these two approaches to improving stratified care for LBP, which will develop and
validate powerful prediction models using clinical electronic health record (EHR) and genomic data.
This research will two parts to achieve each of the two study aims. Part I will involve genome-wide association
study (GWAS) meta-analyses to predict outcomes for LBP-associated conditions, including participants from
the Million Veteran Program (MVP), the Electronic Medical Records and Genomics Network phase 3
(eMERGE3) network, and the UK Biobank, as well as summary data from other genomic biobanks. Part II will
involve the development and validation of multivariable prognostic models for LBP-related outcomes. First,
multivariable prognostic models will be developed using a cross-validation approach in 80% of the MVP
sample, using only clinical data (visits, diagnoses, pharmacy, vital signs, etc.) from the VA EHR; only
genomic data (genome-wide PRSs); and both clinical and genomic data. Next, the best-performing
multivariable models developed in each aim will be validated in an independent 20% sample of MVP
participants, the eMERGE network phase 3, and UK Biobank. Aim 1. Develop and validate prognostic
models for the risk of chronic LBP with healthcare use (CLBP-HU) in Veterans. These models will identify
Veterans with LBP of substantial impact sufficient to warrant healthcare use, who should be prioritized for
rehabilitative pain treatments. GWAS of CLBP-HU will be conducted. Validated variants will be characterized
and their potential biological roles examined. Multivariable models for predicting CLBP-HU will then be
developed and compared with each other. These models will be informed by (a) EHR-defined clinical data, (b)
genomic data (genome-wide PRSs), and (c) both clinical and genomic data. Hypothesis: prognostic models for
predicting CLBP-HU will have acceptable discrimination (area under the receiver operating characteristic curve
[AUC] ≥ 0.75). The best-performing models will then be validated in other samples. Aim 2. Develop and
validate prognostic models for the risk of failure of non-operative treatment (surgical decompression)
in two LBP subgroups: (1) Veterans with LSRS and (2) Veterans with SLSS. The same approach will be
followed as used for GWAS and model development in Aim 1. Models developed in Aim 2 will identify Veterans
at high risk for progression to decompression surgery, for whom prolonged rehabilitation (e.g., physical
therapy) is unlikely to be successful. Hypothesis: prognostic models for predicting decompression surgery
using genomic data only will have acceptable discrimination (AUC ≥ 0.75).
下背痛(LBP)是全球残疾的第一大原因,也是新发VA的第四大最常见原因
残疾赔偿金。LBP的社会负担主要归因于2个不同的患者亚组:(1)
那些使用医疗保健资源治疗慢性(持续性或复发性)LBP的人;以及(2)那些正在接受LBP的人
与LBP和/或神经性疾病相关的特定脊柱相关病症的外科治疗
症状/体征,如腰骶神经根综合征(LSRS)和症状性腰椎管狭窄症
(SLSS)。个性化的方法,以提高护理和治疗结果的效率,
退伍军人亚组有可能减少退伍军人群体的LBP负担。分层
基于预后的LBP护理显示出早期的希望,当与有关身体的临床决定联系起来时,
疗法分层护理的更强大的效果可能来自于提高可行性和预后
风险分层的能力或将风险分层与关于治疗大
LBP患者亚组中的幅度效应(例如,LSRS的减压手术)。拟议
研究将应用这两种方法来改善LBP的分层护理,这将发展和
使用临床电子健康记录(EHR)和基因组数据验证强大的预测模型。
本研究将分两部分来实现这两个研究目标。第一部分将涉及全基因组关联
研究(GWAS)荟萃分析,以预测LBP相关疾病的结局,包括来自
百万退伍军人计划(MVP),电子病历和基因组学网络第3阶段
(eMERGE 3)网络和英国生物库,以及来自其他基因组生物库的汇总数据。第二部分将
涉及LBP相关结果的多变量预后模型的开发和验证。第一、
将在80%的MVP中使用交叉验证方法开发多变量预后模型
样本,仅使用临床数据(访视、诊断、药房、生命体征等)从VA EHR;仅
基因组数据(全基因组PRS);以及临床和基因组数据。接下来是表现最好的
为每个目标开发的多变量模型将在独立的20% MVP样本中进行验证
参与者,eMERGE网络第三阶段,和英国生物银行。目标1.制定并验证预后
模型的风险慢性LBP与医疗保健使用(CLBP-HU)的退伍军人。这些模型将识别
患有LBP的退伍军人的实质性影响足以保证医疗保健的使用,他们应该优先考虑
疼痛康复治疗。将进行CLBP-HU的GWAS。将对经验证的变体进行表征
以及它们潜在的生物学作用。预测CLBP-HU的多变量模型将是
发展并相互比较。这些模型将通过(a)EHR定义的临床数据,(B)
基因组数据(全基因组PRS),以及(c)临床和基因组数据。假设:
预测CLBP-HU将具有可接受的辨别力(受试者操作特征曲线下的面积
[AUC]≥ 0.75)。然后将在其他样本中验证性能最佳的模型。目标二。开发和
验证非手术治疗(手术减压)失败风险的预后模型
两个LBP亚组:(1)LSRS退伍军人和(2)SLSS退伍军人。同样的方法将是
随后用于目标1中的GWAS和模型开发。目标2中开发的模型将识别退伍军人
进展为减压手术的风险高,对于那些长期康复的人(例如,物理
治疗)不太可能成功。假设:预测减压手术的预后模型
仅使用基因组数据将具有可接受的区分度(AUC ≥ 0.75)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pradeep Suri其他文献
Pradeep Suri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pradeep Suri', 18)}}的其他基金
Effects of Physical Activities on Pain and Functional Recovery in Low Back Pain
体力活动对腰痛疼痛和功能恢复的影响
- 批准号:
10377320 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Effects of Physical Activities on Pain and Functional Recovery in Low Back Pain
体力活动对腰痛疼痛和功能恢复的影响
- 批准号:
10610319 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Combined Treatments to Optimize Functional Recovery in Veterans with Chronic Low Back Pain
联合治疗可优化患有慢性腰痛的退伍军人的功能恢复
- 批准号:
10174853 - 财政年份:2018
- 资助金额:
-- - 项目类别:
A Twin Study of Chronic Back Pain and Associated Disability in Veterans
退伍军人慢性背痛和相关残疾的双胞胎研究
- 批准号:
8784821 - 财政年份:2014
- 资助金额:
-- - 项目类别:
A Twin Study of Chronic Back Pain and Associated Disability in Veterans
退伍军人慢性背痛和相关残疾的双胞胎研究
- 批准号:
9172623 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant