Unraveling the Mechanism of Mechanotransduction in Hierarchical Collagen Fiber Formation
揭示分层胶原纤维形成中的力传导机制
基本信息
- 批准号:10637410
- 负责人:
- 金额:$ 32.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinCellsChemicalsCicatrixClosure by clampCollagenCollagen FiberCollagen FibrilCuesCytoskeletonDevelopmentDevicesDiameterEmbryoEngineeringEnvironmentFascicleFiberFibroblastsFocal Adhesion Kinase 1GelGoalsHumanIn VitroIndividualInjuryIntegrinsIon ChannelKnowledgeLengthLigamentsMechanical StimulationMechanicsMeniscus structure of jointMethodsMusculoskeletalNatural regenerationNeonatalPainPeriodicityPiezo 1 ion channelPlayProteoglycanProtocols documentationRehabilitation therapyRoleSignal PathwaySignal TransductionSourceStretchingSurfaceSystemTendon structureTissue EngineeringTissuesTranslatingWorkcell growth regulationcellular developmentclinically relevantcrosslinkdensityin vivoinsightloss of functionmechanical signalmechanotransductionmetermouse modelnovelpostnatalrepairedreplacement tissueresponserestraintsensortherapeutic targettissue regenerationtransmission process
项目摘要
PROJECT SUMMARY
Collagen fibers are the primary source of strength and function in tissues throughout the body, particular tendons,
ligaments, and menisci. Cells organize these fibers hierarchically, assemble them from nm-wide fibrils, into larger
fibers and fascicles, growing in size and strength with increasing mechanical demand. Injuries disrupt this
organization, resulting in loss of function, pain, and decreased mobility. Unfortunately, collagen fibers do not
regenerate after injury, nor in engineered replacements, creating a lack of repair options for torn tendons,
ligaments, and menisci. Our long-term goal is to understand how cells regulate collagen fiber formation so to
engineer functional replacements and drive repair in vivo for musculoskeletal tissues throughout the body. As a
step towards this goal, the objective of this proposal is to explore how mechanical cues transmitted via cellular
contraction and stretch-activated ion channels regulate ligament fibroblast’s development of hierarchical fibers.
While cellular contraction forces, highly regulated by integrins, focal adhesion kinase (FAK), and the actomyosin
network, are well established to play a major role in collagen fibril alignment, recent work has suggested stretch-
activated ion channels, TRPV4 and Piezo1, also play independent and transient roles in regulating collagen
organization. However, this work is largely confined to 2D surfaces, unorganized collagen gels, or mouse
models, which all lack the larger fibers and fascicles that dominate human musculoskeletal tissues. Recently, we
developed a novel culture device that guides cells to produce native-size hierarchically organized fibrils, fibers, and
fascicles over 6 weeks of culture. This novel system provides the unique ability to finally dissect the mechanical
cues of development and investigate how these forces guide cells to produce strong hierarchical fibers. We
hypothesize mechanical signals via integrin-based contraction and stretch-activated ion channels are critical to
cell-driven hierarchical fiber formation, with each regulating different aspects of fiber maturation, both with and
without dynamic load. Specifically, we hypothesize that while cellular contraction via FAK is critical to progressive
hierarchical development, TRPV4 will regulate alignment and remodeling at the fibril level, and Piezo1 will
regulate matrix maturation via collagen crosslinking at the fiber and fascicle level. In Aim 1 we will evaluate the
contribution of FAK, TRPV4, and Piezo1 in passive static culture when cell-generated contraction forces drive
fiber formation and in Aim 2 we will evaluate how their contribution changes with dynamic mechanical stimulation.
In both aims, we will investigate how each signaling mechanism, when inhibited or activated, alters collagen
organization at the fibril, fiber, and fascicle length-scale, proteoglycan accumulation, and collagen crosslinking,
all important to overall tissue function and mechanics. A better understanding of how mechanical cues drive cells
to produce hierarchical fibers is integral not only to creating functional replacements, but also identifying
therapeutic targets for regenerating collagen fibers after injury, reducing scar formation, and developing optimal
rehabilitation protocols for regenerating musculoskeletal tissues throughout the body.
项目摘要
胶原纤维是整个身体组织,特别是肌腱,
韧带和韧带。细胞按层次组织这些纤维,将它们从nm宽的原纤维组装成更大的
纤维和纤维束,随着机械需求的增加,尺寸和强度不断增长。受伤破坏了这一点
组织,导致功能丧失,疼痛和活动能力下降。不幸的是,胶原纤维不
受伤后再生,也不是在工程更换,造成缺乏修复选项撕裂肌腱,
韧带和韧带。我们的长期目标是了解细胞如何调节胶原纤维的形成,
设计功能性替代品,并在体内驱动全身肌肉骨骼组织的修复。作为
朝着这一目标迈出了一步,本提案的目标是探索机械线索如何通过细胞传递
收缩和拉伸激活的离子通道调节韧带成纤维细胞的分级纤维的发育。
而细胞收缩力,高度调节的整合素,粘着斑激酶(FAK),和肌动球蛋白
网络,是公认的发挥主要作用的胶原纤维排列,最近的工作表明,拉伸-
激活的离子通道TRPV4和Piezo1也在调节胶原蛋白中发挥独立和短暂的作用
organization.然而,这项工作在很大程度上局限于2D表面,无组织的胶原蛋白凝胶,或小鼠
这些模型都缺乏支配人类肌肉骨骼组织的较大纤维和纤维束。最近我们
开发了一种新的培养装置,引导细胞产生天然大小的分层组织的原纤维,纤维,
培养6周以上的束。这种新颖的系统提供了独特的能力,最终剖析机械
发展的线索,并研究这些力量如何引导细胞产生强大的层次纤维。我们
通过基于整合素收缩和拉伸激活离子通道的假设机械信号对于
细胞驱动的分层纤维形成,每个调节纤维成熟的不同方面,
没有动态负载。具体来说,我们假设,虽然通过FAK的细胞收缩是进行性的,
TRPV4将在原纤维水平上调节排列和重塑,而Piezo1将
在纤维和纤维束水平通过胶原交联调节基质成熟。在目标1中,我们将评估
当细胞产生的收缩力驱动时,FAK,TRPV 4和Piezo 1在被动静态培养中的作用
纤维形成,在目标2中,我们将评估它们的贡献如何随着动态机械刺激而变化。
在这两个目标,我们将探讨如何每一个信号机制,当抑制或激活,改变胶原蛋白
原纤维、纤维和纤维束长度尺度的组织、蛋白聚糖积累和胶原蛋白交联,
所有这些对整个组织功能和力学都很重要。更好地理解机械线索如何驱动细胞
生产层次纤维不仅是创造功能替代品的组成部分,
用于损伤后再生胶原纤维、减少瘢痕形成和开发最佳的治疗靶点,
再生全身肌肉骨骼组织的康复方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Puetzer其他文献
Jennifer Puetzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Toxic Effects of Extracellular Vesicles(Exosomes) from the cells exposed to Environmental Chemicals
暴露于环境化学物质的细胞的细胞外囊泡(外泌体)的毒性作用
- 批准号:
21K19836 - 财政年份:2021
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2021
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
Functional analysis and application of hematopoietic stem cells to chemicals that replacement for albumin function
造血干细胞替代白蛋白功能的化学物质的功能分析及应用
- 批准号:
20H03707 - 财政年份:2020
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2020
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
Effects of microplastic-derived chemicals on functions of regulatory T cells via nuclear receptor Nr4a.
微塑料衍生化学物质通过核受体 Nr4a 对调节性 T 细胞功能的影响。
- 批准号:
19K10611 - 财政年份:2019
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2019
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
In Situ Sensing of Chemicals Inside Three-dimensional Bacterial Matrices using Artificial Cells
使用人工细胞对三维细菌基质内的化学物质进行原位传感
- 批准号:
1808237 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
NPIF: Cultured plant cells as platforms for the production of high value chemicals
NPIF:培养植物细胞作为生产高价值化学品的平台
- 批准号:
1948578 - 财政年份:2017
- 资助金额:
$ 32.61万 - 项目类别:
Studentship
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2017
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




