Unraveling the Mechanism of Mechanotransduction in Hierarchical Collagen Fiber Formation
揭示分层胶原纤维形成中的力传导机制
基本信息
- 批准号:10637410
- 负责人:
- 金额:$ 32.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinCellsChemicalsCicatrixClosure by clampCollagenCollagen FiberCollagen FibrilCuesCytoskeletonDevelopmentDevicesDiameterEmbryoEngineeringEnvironmentFascicleFiberFibroblastsFocal Adhesion Kinase 1GelGoalsHumanIn VitroIndividualInjuryIntegrinsIon ChannelKnowledgeLengthLigamentsMechanical StimulationMechanicsMeniscus structure of jointMethodsMusculoskeletalNatural regenerationNeonatalPainPeriodicityPiezo 1 ion channelPlayProteoglycanProtocols documentationRehabilitation therapyRoleSignal PathwaySignal TransductionSourceStretchingSurfaceSystemTendon structureTissue EngineeringTissuesTranslatingWorkcell growth regulationcellular developmentclinically relevantcrosslinkdensityin vivoinsightloss of functionmechanical signalmechanotransductionmetermouse modelnovelpostnatalrepairedreplacement tissueresponserestraintsensortherapeutic targettissue regenerationtransmission process
项目摘要
PROJECT SUMMARY
Collagen fibers are the primary source of strength and function in tissues throughout the body, particular tendons,
ligaments, and menisci. Cells organize these fibers hierarchically, assemble them from nm-wide fibrils, into larger
fibers and fascicles, growing in size and strength with increasing mechanical demand. Injuries disrupt this
organization, resulting in loss of function, pain, and decreased mobility. Unfortunately, collagen fibers do not
regenerate after injury, nor in engineered replacements, creating a lack of repair options for torn tendons,
ligaments, and menisci. Our long-term goal is to understand how cells regulate collagen fiber formation so to
engineer functional replacements and drive repair in vivo for musculoskeletal tissues throughout the body. As a
step towards this goal, the objective of this proposal is to explore how mechanical cues transmitted via cellular
contraction and stretch-activated ion channels regulate ligament fibroblast’s development of hierarchical fibers.
While cellular contraction forces, highly regulated by integrins, focal adhesion kinase (FAK), and the actomyosin
network, are well established to play a major role in collagen fibril alignment, recent work has suggested stretch-
activated ion channels, TRPV4 and Piezo1, also play independent and transient roles in regulating collagen
organization. However, this work is largely confined to 2D surfaces, unorganized collagen gels, or mouse
models, which all lack the larger fibers and fascicles that dominate human musculoskeletal tissues. Recently, we
developed a novel culture device that guides cells to produce native-size hierarchically organized fibrils, fibers, and
fascicles over 6 weeks of culture. This novel system provides the unique ability to finally dissect the mechanical
cues of development and investigate how these forces guide cells to produce strong hierarchical fibers. We
hypothesize mechanical signals via integrin-based contraction and stretch-activated ion channels are critical to
cell-driven hierarchical fiber formation, with each regulating different aspects of fiber maturation, both with and
without dynamic load. Specifically, we hypothesize that while cellular contraction via FAK is critical to progressive
hierarchical development, TRPV4 will regulate alignment and remodeling at the fibril level, and Piezo1 will
regulate matrix maturation via collagen crosslinking at the fiber and fascicle level. In Aim 1 we will evaluate the
contribution of FAK, TRPV4, and Piezo1 in passive static culture when cell-generated contraction forces drive
fiber formation and in Aim 2 we will evaluate how their contribution changes with dynamic mechanical stimulation.
In both aims, we will investigate how each signaling mechanism, when inhibited or activated, alters collagen
organization at the fibril, fiber, and fascicle length-scale, proteoglycan accumulation, and collagen crosslinking,
all important to overall tissue function and mechanics. A better understanding of how mechanical cues drive cells
to produce hierarchical fibers is integral not only to creating functional replacements, but also identifying
therapeutic targets for regenerating collagen fibers after injury, reducing scar formation, and developing optimal
rehabilitation protocols for regenerating musculoskeletal tissues throughout the body.
项目摘要
胶原蛋白纤维是整个身体组织中强度和功能的主要来源,特定肌腱,
韧带和半月板。细胞通过分层组织这些纤维,从NM宽的原纤维组装成较大的纤维
纤维和筋膜,随着机械需求的增加,尺寸和强度增长。伤害破坏了这一点
组织,导致功能丧失,疼痛和增加的流动性。不幸的是,胶原蛋白纤维没有
受伤后再生或工程置换术,从而使肌腱缺乏维修选择,
韧带和半月板。我们的长期目标是了解细胞如何调节胶原蛋白纤维形成,从而
工程师的功能替换并驱动体内修复整个身体的肌肉骨骼组织。作为
朝着这个目标迈出的一步,该提案的目的是探索如何通过蜂窝传输机械提示
收缩和拉伸激活的离子通道调节韧带成纤维细胞的层次纤维发展。
而细胞收缩力,由整合素,局灶性粘合剂激酶(FAK)和肌动蛋白高度调节
网络已经确立了在胶原原纤维对齐中发挥重要作用的良好确定,最近的工作表明伸展运动 -
激活的离子通道TRPV4和Piezo1在调节中也起着独立和短暂的作用
组织。但是,这项工作在很大程度上仅限于2D表面,无组织的胶原蛋白凝胶或鼠标
模型都缺乏主导人肌肉骨骼组织的较大纤维和束。最近,我们
开发了一种新型的培养装置,可指导细胞产生天然大小的层次结构组织的原纤维,纤维和
在6周的培养物中束。这个新颖的系统提供了最终剖析机械的独特能力
发育线索和研究这些迫使细胞如何引导细胞产生强大的层次纤维。我们
通过基于整合素的收缩和拉伸激活的离子通道假设的机械信号对
细胞驱动的层次纤维形成,每个控制纤维成熟的不同方面,既有和
没有动态载荷。特别是,我们假设虽然通过FAK的细胞收缩对于渐进式至关重要
层次结构的开发,TRPV4将在原纤维水平调节对齐和重塑,而Piezo1将
通过胶原蛋白在纤维和筋膜水平上交联调节基质成熟。在AIM 1中,我们将评估
当细胞生成的收缩力驱动时,FAK,TRPV4和PIEZO1在被动静态培养中的贡献
纤维形成,在目标2中,我们将评估它们的贡献如何随动态机械刺激而变化。
在这两个目标中,我们都将研究每种信号传导机制如何在抑制或激活时如何改变胶原蛋白
在原纤维,纤维和筋膜长度尺度上的组织,蛋白聚糖的积累和胶原蛋白交联,
所有对整体组织功能和机械的都重要。更好地了解机械提示如何驱动细胞
生产层次纤维不仅是创建功能替代品的组成部分,而且还可以识别
受伤后再生胶原蛋白纤维的治疗靶标,减少疤痕形成并发展最佳
康复方案,用于再生整个身体的肌肉骨骼组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Puetzer其他文献
Jennifer Puetzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
三种槐属药用植物调控肿瘤相关巨噬细胞功能的化学物质基础研究
- 批准号:31960092
- 批准年份:2019
- 资助金额:38 万元
- 项目类别:地区科学基金项目
针刺效应启动子研究——穴位局部硫酸软骨素蛋白多糖在针刺效应初始调控中的作用及机制研究
- 批准号:81603677
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
针刺穴位效应启动的初始动力学调控机制研究
- 批准号:81173204
- 批准年份:2011
- 资助金额:56.0 万元
- 项目类别:面上项目
基于神经源性炎性反应的阿是穴产生机理的研究
- 批准号:81072881
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
环境化学物质对生殖细胞及早期胚胎的诱变性监测
- 批准号:38770524
- 批准年份:1987
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Mechanics of Cells & Tissues impact Chromosome Instability & Phagocytic Interactions
细胞力学
- 批准号:
10626283 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
The Molecular Basis of Nasal Pit Morphogenesis and its Role in Upper Lip Formation
鼻凹形态发生的分子基础及其在上唇形成中的作用
- 批准号:
10824138 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Mechanisms and Functions of Unconventional Intercellular Calcium Waves in Electrically Non-excitable Cells
电不可兴奋细胞中非常规细胞间钙波的机制和功能
- 批准号:
10714066 - 财政年份:2023
- 资助金额:
$ 32.61万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10748207 - 财政年份:2022
- 资助金额:
$ 32.61万 - 项目类别: