Unraveling the Mechanism of Mechanotransduction in Hierarchical Collagen Fiber Formation
揭示分层胶原纤维形成中的力传导机制
基本信息
- 批准号:10637410
- 负责人:
- 金额:$ 32.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinCellsChemicalsCicatrixClosure by clampCollagenCollagen FiberCollagen FibrilCuesCytoskeletonDevelopmentDevicesDiameterEmbryoEngineeringEnvironmentFascicleFiberFibroblastsFocal Adhesion Kinase 1GelGoalsHumanIn VitroIndividualInjuryIntegrinsIon ChannelKnowledgeLengthLigamentsMechanical StimulationMechanicsMeniscus structure of jointMethodsMusculoskeletalNatural regenerationNeonatalPainPeriodicityPiezo 1 ion channelPlayProteoglycanProtocols documentationRehabilitation therapyRoleSignal PathwaySignal TransductionSourceStretchingSurfaceSystemTendon structureTissue EngineeringTissuesTranslatingWorkcell growth regulationcellular developmentclinically relevantcrosslinkdensityin vivoinsightloss of functionmechanical signalmechanotransductionmetermouse modelnovelpostnatalrepairedreplacement tissueresponserestraintsensortherapeutic targettissue regenerationtransmission process
项目摘要
PROJECT SUMMARY
Collagen fibers are the primary source of strength and function in tissues throughout the body, particular tendons,
ligaments, and menisci. Cells organize these fibers hierarchically, assemble them from nm-wide fibrils, into larger
fibers and fascicles, growing in size and strength with increasing mechanical demand. Injuries disrupt this
organization, resulting in loss of function, pain, and decreased mobility. Unfortunately, collagen fibers do not
regenerate after injury, nor in engineered replacements, creating a lack of repair options for torn tendons,
ligaments, and menisci. Our long-term goal is to understand how cells regulate collagen fiber formation so to
engineer functional replacements and drive repair in vivo for musculoskeletal tissues throughout the body. As a
step towards this goal, the objective of this proposal is to explore how mechanical cues transmitted via cellular
contraction and stretch-activated ion channels regulate ligament fibroblast’s development of hierarchical fibers.
While cellular contraction forces, highly regulated by integrins, focal adhesion kinase (FAK), and the actomyosin
network, are well established to play a major role in collagen fibril alignment, recent work has suggested stretch-
activated ion channels, TRPV4 and Piezo1, also play independent and transient roles in regulating collagen
organization. However, this work is largely confined to 2D surfaces, unorganized collagen gels, or mouse
models, which all lack the larger fibers and fascicles that dominate human musculoskeletal tissues. Recently, we
developed a novel culture device that guides cells to produce native-size hierarchically organized fibrils, fibers, and
fascicles over 6 weeks of culture. This novel system provides the unique ability to finally dissect the mechanical
cues of development and investigate how these forces guide cells to produce strong hierarchical fibers. We
hypothesize mechanical signals via integrin-based contraction and stretch-activated ion channels are critical to
cell-driven hierarchical fiber formation, with each regulating different aspects of fiber maturation, both with and
without dynamic load. Specifically, we hypothesize that while cellular contraction via FAK is critical to progressive
hierarchical development, TRPV4 will regulate alignment and remodeling at the fibril level, and Piezo1 will
regulate matrix maturation via collagen crosslinking at the fiber and fascicle level. In Aim 1 we will evaluate the
contribution of FAK, TRPV4, and Piezo1 in passive static culture when cell-generated contraction forces drive
fiber formation and in Aim 2 we will evaluate how their contribution changes with dynamic mechanical stimulation.
In both aims, we will investigate how each signaling mechanism, when inhibited or activated, alters collagen
organization at the fibril, fiber, and fascicle length-scale, proteoglycan accumulation, and collagen crosslinking,
all important to overall tissue function and mechanics. A better understanding of how mechanical cues drive cells
to produce hierarchical fibers is integral not only to creating functional replacements, but also identifying
therapeutic targets for regenerating collagen fibers after injury, reducing scar formation, and developing optimal
rehabilitation protocols for regenerating musculoskeletal tissues throughout the body.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Puetzer其他文献
Jennifer Puetzer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Toxic Effects of Extracellular Vesicles(Exosomes) from the cells exposed to Environmental Chemicals
暴露于环境化学物质的细胞的细胞外囊泡(外泌体)的毒性作用
- 批准号:
21K19836 - 财政年份:2021
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2021
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
Functional analysis and application of hematopoietic stem cells to chemicals that replacement for albumin function
造血干细胞替代白蛋白功能的化学物质的功能分析及应用
- 批准号:
20H03707 - 财政年份:2020
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2020
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
Effects of microplastic-derived chemicals on functions of regulatory T cells via nuclear receptor Nr4a.
微塑料衍生化学物质通过核受体 Nr4a 对调节性 T 细胞功能的影响。
- 批准号:
19K10611 - 财政年份:2019
- 资助金额:
$ 32.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2019
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
In Situ Sensing of Chemicals Inside Three-dimensional Bacterial Matrices using Artificial Cells
使用人工细胞对三维细菌基质内的化学物质进行原位传感
- 批准号:
1808237 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Standard Grant
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2018
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual
NPIF: Cultured plant cells as platforms for the production of high value chemicals
NPIF:培养植物细胞作为生产高价值化学品的平台
- 批准号:
1948578 - 财政年份:2017
- 资助金额:
$ 32.61万 - 项目类别:
Studentship
Defining the Effects of Endocrine-Disrupting Chemicals on the Cellular Metabolism of Inflammatory Cells
定义内分泌干扰化学物质对炎症细胞代谢的影响
- 批准号:
RGPIN-2015-05413 - 财政年份:2017
- 资助金额:
$ 32.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




