Improving the efficiency and equity of critical care allocation during a crisis with place-based disadvantage indices
利用基于地点的劣势指数提高危机期间重症监护分配的效率和公平性
基本信息
- 批准号:10638835
- 负责人:
- 金额:$ 48.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAlgorithm DesignAlgorithmsAreaBlack PopulationsCOVID-19 pandemicCaringChicagoClinical DataCreatinineCritical CareCritical IllnessDataDatabasesDisadvantagedDisastersDisparity populationDoseElectronic Health RecordEnsureEnvironmentEquationEquityEthicsEthnic OriginEthnic PopulationEthnic equityEvaluationEventGeographyHealthcareHospitalsInequityIntensive Care UnitsKidneyLaboratoriesLegalLifeMathematicsMeasuresMechanicsModelingMonitorNatureNeighborhoodsOrgan failureOutcomePatientsPerformancePharmaceutical PreparationsPoliticsPopulation DistributionsProbabilityProtocols documentationPublic HealthPublishingRaceRecordsResource AllocationResourcesRiskScoring MethodSeriesSiteStructureSystemTestingTimeTriageUS StateValidationblack patientcohortcoronavirus diseasedata enclavedeprivationdesignethnic minority populationevaluation/testingfallshealth care disparityimprovedindexingmodels and simulationmortality riskneighborhood disadvantagenovelopen sourceorgan allocationpublic health ethicsracial biasracial minority populationracial populationresidential segregationrisk predictionsimulationsimulation softwaresocialsocial disparitiessocial vulnerabilitysurvival predictionsystematic reviewtreatment response
项目摘要
PROJECT SUMMARY
When a US hospital system is overwhelmed by disaster, Crisis Standards of Care guide the triage teams forced
to choose which patients receive scarce life support treatments. Analogous to an organ allocation system, these
algorithms convert ethical principles into a concrete rank ordering of candidates for Intensive Care Unit (ICU)
treatments with life support allocation scores. Disasters that produce scarcity tend to fall hardest on
disadvantaged communities, especially racial and ethnic minority groups. When designing algorithms to allocate
scarce life support, public health officials should take this context into account.
In an attempt to identify the critically ill patients with the highest likelihood of benefit from treatment,
most US states would prioritize those with low Sequential Organ Failure Assessment (SOFA) scores. But
SOFA was designed for patients already on life support in the ICU, using routinely measured laboratory values,
drug doses, and vital signs to monitor response to treatment. Most patients have low SOFA scores when
critical illness is first recognized, and SOFA cannot accurately predict the risk of death using data before life
support was allocated. We demonstrated how the poor predictive performance of SOFA-based triage protocols
is partially explained by underpredicting the survival of Black patients due to a miscalibrated renal component
of the SOFA score. There is a clear need to develop and validate a novel life support allocation protocol
designed to debias existing scores and save more lives. Place-based disadvantage indices, such as the
Area Deprivation Index (ADI) and the Social Vulnerability Index, offer a potential solution. Using these
validated geographical measures of neighborhood deprivation to allocate scarce healthcare resources
counteracts the risk-increasing effects of social disadvantage, including disadvantage produced by racialized
residential segregation. We hypothesize that a well-designed life support allocation score using place-based
disadvantage indices can save more lives and mitigate healthcare inequity in a crisis.
The overall objective of this project is to develop a life support allocation algorithm that accurately and
equitably allocates scarce ICU treatments in a crisis. In Aim 1, we will use structural equation modeling to
create an Equitable Life Support Allocation (ELSA) score, using place-based disadvantage indices to debias
SOFA. In Aim 2, develop the ICU Crisis Simulation Model (ICSM), a discrete event simulation that models
patient flow and survival, as a testing and evaluation environment for life support allocation protocols. In Aim 3,
we will externally validate ELSA and ICSM in the National COVID Cohort Collaborative Data Enclave, which
currently contains geocoded records from 14 million patients from 74 sites. Our project will address one of
the most pressing challenges in applied public health ethics, producing 1) an empirically derived score to
distribute life support more accurately and equitably in a crisis and 2) open-source simulation software to
evaluate the efficiency and equity of life support allocation protocols.
项目摘要
当美国医院系统被灾难淹没时,危机护理标准指导分流团队被迫
选择哪些病人接受稀缺的生命支持治疗。类似于器官分配系统,
算法将伦理原则转换为重症监护病房(ICU)候选人的具体排名
生命支持分配评分。造成资源短缺的灾难往往是最严重的
弱势群体,特别是少数种族和族裔群体。当设计算法来分配
由于缺乏生命支持,公共卫生官员应考虑到这一情况。
为了确定最有可能从治疗中获益的重症患者,
大多数美国州将优先考虑那些具有低序贯器官衰竭评估(SOFA)分数的人。但
SOFA是为已经在ICU接受生命支持的患者设计的,使用常规测量的实验室值,
药物剂量和生命体征,以监测对治疗的反应。大多数患者的SOFA评分较低,
危重症首先被识别,SOFA无法使用生前数据准确预测死亡风险
支持已分配。我们证明了基于SOFA的分诊协议的预测性能差
部分原因是由于肾脏成分校准错误而低估了黑人患者的生存率
SOFA评分。显然需要开发和验证一种新的生命支持分配协议
旨在消除现有分数的偏见并拯救更多生命。基于地点的劣势指数,例如
地区脆弱性指数和社会脆弱性指数提供了一种可能的解决办法。使用这些
有效的邻里剥夺地理措施,以分配稀缺的医疗资源
消除社会不利因素,包括种族歧视造成的不利因素,
居住隔离。我们假设,一个设计良好的生命支持分配分数,使用基于地点的
劣势指数可以挽救更多的生命,并减轻危机中的医疗不平等。
该项目的总体目标是开发一种生命支持分配算法,
在危机中公平分配稀缺的ICU治疗。在目标1中,我们将使用结构方程模型来
创建一个公平的生命支持分配(艾尔莎)评分,使用基于地点的劣势指数来消除偏见
沙发在目标2中,开发ICU危机模拟模型(ICSM),这是一种离散事件模拟,
病人流量和生存,作为生命支持分配协议的测试和评估环境。在目标3中,
我们将在国家COVID队列协作数据飞地中对艾尔莎和ICSM进行外部验证,
目前包含来自74个站点的1400万患者的地理编码记录。我们的项目将解决一个
应用公共卫生伦理学中最紧迫的挑战,产生1)经验得出的分数,
在危机中更准确和公平地分配生命支持,2)开源模拟软件,
评估生命支持分配协议的效率和公平性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William F Parker其他文献
William F Parker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William F Parker', 18)}}的其他基金
Mending a Broken Heart Allocation System with Machine Learning
用机器学习修复破碎的心分配系统
- 批准号:
10563177 - 财政年份:2020
- 资助金额:
$ 48.35万 - 项目类别:
Mending a Broken Heart Allocation System with Machine Learning
用机器学习修复破碎的心分配系统
- 批准号:
10088470 - 财政年份:2020
- 资助金额:
$ 48.35万 - 项目类别:
Mending a Broken Heart Allocation System with Machine Learning
用机器学习修复破碎的心分配系统
- 批准号:
10382214 - 财政年份:2020
- 资助金额:
$ 48.35万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 48.35万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 48.35万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 48.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 48.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral