Chromosome 18 Cohort Phenotype Enrichment to Strengthen the Gabriella Miller Kids First Program
18 号染色体队列表型富集以加强 Gabriella Miller Kids First 计划
基本信息
- 批准号:10637695
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-21 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressCategoriesChildChromosome 18Chromosome DeletionCommunitiesComplementCongenital AbnormalityDataData ElementData SetDatabasesEnsureEvaluationFamilyFeedbackGenesGeneticGoalsHumanIndividualInheritedKnowledgeMalignant NeoplasmsMapsMedicalMedical RecordsMolecularMonitorMutationNatural HistoryOntologyOther GeneticsOutcomeParentsParticipantPediatric HospitalsPediatric ResearchPenetrancePeriodicalsPersonsPharmaceutical PreparationsPhenotypePhiladelphiaQuestionnairesRecontactsRecording of previous eventsRecordsReportingResearchResearch PersonnelScanningSiteSourceStandardizationStructural Congenital AnomaliesSurveysSystemTerminologyTreatment outcomeUpdateWorkcancer diagnosisclinical research sitecohortdata exchangedata harmonizationdata integrationdata interoperabilitydata resourcedata sharingdata submissiondisease classificationendophenotypefollow-upgenomic datainteroperabilityphenotypic dataprogramsrepositoryresearch clinical testing
项目摘要
Abstract
The chromosome 18 cohort with hemizygous deletions of chromosome 18 who manifest a multitude of
structural birth defects bring an expanded opportunity to the Gabrielle Miller Kids First Pediatric Research
Program (GMKF) (Project number (HD107271-01). This cohort, with known and varied genetic contributors to
those birth defects, will contribute valuable data toward understanding the underlying molecular gene
contributors of a variety of a number of structural birth defects. However, our current phenotypic database
lacks important details about the associated endophenotypes and the outcomes of any treatments. We have a
wealth of data in the existing scanned medical records, survey and questionnaire answers and from our on-site
clinical evaluation records. Additionally we have longstanding relationships with the participating families and
can follow up to verify, get new details, and clarify information. We propose to expand the scope of the curated
data elements, map Human Phenotype Ontology (HPO) terms to those data elements thereby increasing the
value of the data available to the research community. Our plan to enhance the depth and scope of the
phenotype data is to first reevaluate all the existing records adding additional data elements where necessary
to the database. This evaluation will generate a report for the families detailing the information we have and the
dates the information was gathered. We will ask the families for any updated information focusing on
evaluation and treatment outcomes for any of the structural birth defects as well as any cancer diagnoses. The
enhanced dataset will be standardized by the mapping of the Human Phenotype Ontology (HPO) terms to the
data elements. The outcome of this project will be to increase the accessibility and quality of these data to the
broader research community as these phenotype data are integrated with the genomic data generated by the
GMKF program.
抽象的
具有 18 号染色体半合子缺失的 18 号染色体群体,表现出多种
结构性出生缺陷为 Gabrielle Miller Kids First 儿科研究带来了更多机会
计划 (GMKF)(项目编号 (HD107271-01)。该队列具有已知的各种遗传因素,
这些出生缺陷将为理解潜在的分子基因提供有价值的数据
多种结构性出生缺陷的促成因素。然而,我们目前的表型数据库
缺乏有关相关内表型和任何治疗结果的重要细节。我们有一个
现有扫描病历、调查和问卷答案以及我们现场的大量数据
临床评估记录。此外,我们与参与家庭有着长期的合作关系
可以跟进核实、获取新的详细信息并澄清信息。我们建议扩大策划范围
数据元素,将人类表型本体(HPO)术语映射到这些数据元素,从而增加
研究界可获得的数据的价值。我们计划加强该项目的深度和广度
表型数据首先重新评估所有现有记录,并在必要时添加其他数据元素
到数据库。该评估将为家庭生成一份报告,详细说明我们所掌握的信息以及
收集信息的日期。我们将向家属询问任何最新信息,重点关注
任何结构性出生缺陷以及任何癌症诊断的评估和治疗结果。这
增强的数据集将通过将人类表型本体(HPO)术语映射到
数据元素。该项目的成果将是提高这些数据的可访问性和质量
更广泛的研究界,因为这些表型数据与由
GMKF 程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JANNINE De Mars CODY其他文献
JANNINE De Mars CODY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JANNINE De Mars CODY', 18)}}的其他基金
Molecular and Cellular Mechanisms of Chromosome 18q23 Dysmyelination
染色体 18q23 髓鞘脱失的分子和细胞机制
- 批准号:
10592982 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
The geometry of braids and triangulated categories
辫子的几何形状和三角类别
- 批准号:
DE240100447 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Early Career Researcher Award
Constructing and Classifying Pre-Tannakian Categories
前坦纳克阶范畴的构建和分类
- 批准号:
2401515 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Deformation of singularities through Hodge theory and derived categories
通过霍奇理论和派生范畴进行奇点变形
- 批准号:
DP240101934 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Projects
Representation Theory and Geometry in Monoidal Categories
幺半群范畴中的表示论和几何
- 批准号:
2401184 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Continuing Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Eco Warrior: Expanding to new Plastic Free Categories
生态战士:扩展到新的无塑料类别
- 批准号:
10055912 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant for R&D
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Fellowship Award
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
- 批准号:
2302262 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant














{{item.name}}会员




