Catalysis and inhibition of chitin synthesis from pathogenic fungi

病原真菌几丁质合成的催化和抑制

基本信息

  • 批准号:
    10640198
  • 负责人:
  • 金额:
    $ 61.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-07 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract The available antifungal drugs against invasive fungal infections are limited due to the challenge in selectively killing eukaryotic pathogens without harming humans. Chitin synthases (CHSs) represent one of few proven targets whose inhibition provides highly selective antifungal effects without any detectable toxicity to humans. CHSs are transmembrane processive glycosyltransferases (GTs) responsible for the biosynthesis of chitin, an essential polysaccharide component of the fungal cell wall. Due to their essential function in fungal physiology, CHSs are targeted by naturally occurring peptidyl nucleoside (PN) antifungal agents. PNs exhibit in vivo activities against multiple endemic fungal pathogens without adverse effects on humans, and exhibit a strong synergy with current FDA-approved antifungal drugs. However, their development has been slow because of only moderate antifungal activities against more clinically prevalent fungal pathogens such as Candida albicans and the absence of atomic-level understanding of CHS. Our long-term goal is to provide a comprehensive understanding of CHS catalysis, regulation, and inhibition at the atomic level. The current application focuses on structural and mechanistic studies of the catalysis and inhibition of C. albicans CHSs. C. albicans has four CHSs of which CaCHS1 and CaCH2 require simultaneous inhibition for fungicidal effects. While existing PNs potently inhibit CaCHS2, they are much weaker against CaCHS1 and thus exhibit only moderate antifungal activity against C. albicans. The molecular mechanism behind the difference in PN potency between CaCHS1 and CaCH2 is currently unknown. For the future development of CHS-targeting anti-candida agents, it is essential to understand their structural and mechanistic differences for both catalysis and inhibition. As a preliminary study, we heterologously expressed and purified catalytically active CaCHS1 and CaCHS2, and solved the cryo-EM structures of CaCHS2 in the apo-, substrate-bound, and PN (nikkomycin Z and polyoxin D)-bound forms. We also developed novel activity assays for the determination of chitin chain length and quantitation of both long insoluble chitin and short soluble chito-oligosaccharides, and established a method for chemo-enzymatic synthesis of nikkomycin analogs. Based on these developments, we propose to study the mechanism of chitin formation and extrusion by CaCHS2 (Aim 1), the functional and structural basis of the lower susceptibility of CaCHS1 to PNs as well as the synergy of using both CaCHS1 and CaCHS2 inhibitors (Aim 2), and the detailed and systematic structure-activity relationships of PNs (Aim 3). For Aims 2 and 3, clinical isolates of C. albicans and non-albicans candida strains will also be included for inhibitor testing, increasing the translational potential of our research program. The proposed research is significant because it will provide the molecular basis for future development of novel antifungals against a clinically unexploited target.
项目摘要/摘要 可用于治疗侵袭性真菌感染的抗真菌药物是有限的,因为选择性地 在不伤害人类的情况下杀死真核病原体。几丁质合成酶(CHSS)是为数不多的已证实的 其抑制作用提供高度选择性的抗真菌作用而对人类没有任何可检测到的毒性的靶标。 CHs是负责甲壳素生物合成的跨膜过程性糖基转移酶(GTS)。 真菌细胞壁的基本多糖组分。由于它们在真菌生理学中的基本功能, CHSS是天然的多肽核苷(PN)抗真菌药物的靶标。三七总皂甙在体内表现出活性 对抗多种地方性真菌病原体,对人类没有不良影响,并显示出很强的协同作用 目前FDA批准的抗真菌药物。然而,它们的发展一直很缓慢,因为只有适度的 对临床常见真菌病原体的抗真菌活性,如白色念珠菌和 缺乏对CHS的原子水平的理解。我们的长期目标是提供一个全面的理解 在原子水平上对CHS的催化、调节和抑制。当前的应用主要集中在结构和 白色念珠菌CHSS催化和抑制的机理研究。白色念珠菌有四个CHS,其中 CaCHS1和CaCH2需要同时抑制杀菌作用。而现有的PNS有效地抑制了 CaCHS2对CaCHS1的抗菌活性要弱得多,因此对C. 白念珠菌。CaCHS_1和CaCH_2 Pn活性差异的分子机制是 目前尚不清楚。对于CHS靶向抗念珠菌药物的未来发展,至关重要的是 了解它们在催化和抑制方面的结构和机理差异。作为初步研究, 我们异源表达和纯化了具有催化活性的CaCHS1和CaCHS2,并解决了低温EM CaCHS2在脱氧核糖核酸、底物结合和PN(尼克霉素Z和多氧菌素D)结合形式中的结构。我们 还开发了新的活性分析方法来测定甲壳素的链长和两者的定量 不溶于水的甲壳素和短溶壳寡糖,建立了一种化学-酶促反应的方法 尼可霉素类似物的合成。基于这些发展,我们建议研究甲壳素的作用机理。 CaCHS_2的形成和挤出(目标1),低磁化率的功能和结构基础 CaCHS1到PNS以及同时使用CaCHS1和CaCHS2抑制剂的协同作用(目标2),以及详细的 和三七总皂苷的系统构效关系(目标3)。对于AIMS 2和AIMS 3,临床分离的白色念珠菌 非白色念珠菌菌株也将被纳入抑制剂测试,增加翻译潜力 我们的研究项目。这项拟议的研究具有重要意义,因为它将为 针对临床未开发靶点的新型抗真菌药物的未来发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seok-Yong Lee其他文献

Seok-Yong Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seok-Yong Lee', 18)}}的其他基金

Molecular principles of anti-COVID-19 drug uptake by human nucleoside transporters
人类核苷转运蛋白摄取抗COVID-19药物的分子原理
  • 批准号:
    10703355
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
Catalysis and inhibition of chitin synthesis from pathogenic fungi
病原真菌几丁质合成的催化和抑制
  • 批准号:
    10501171
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
Molecular principles of anti-COVID-19 drug uptake by human nucleoside transporters
人类核苷转运蛋白摄取抗COVID-19药物的分子原理
  • 批准号:
    10348225
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    10403716
  • 财政年份:
    2021
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structural and Mechanistic Characterization of MraY Catalysis and Inhibition
MraY 催化和抑制的结构和机制表征
  • 批准号:
    9156353
  • 财政年份:
    2017
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    10687812
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    10245145
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    9761604
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    10472617
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
Structure, function, and pharmacology of neuronal membrane transport proteins
神经元膜转运蛋白的结构、功能和药理学
  • 批准号:
    9336001
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 61.14万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
  • 批准号:
    2706416
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了