Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data

解决生物医学集成多视图数据挑战的统计和机器学习方法

基本信息

  • 批准号:
    10650831
  • 负责人:
  • 金额:
    $ 35.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-23 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Many diseases are complex, heterogeneous, conditions that affect multiple organs in the body and depend on the interplay between several factors that include genetic, cellular, molecular, and environmental factors. It is therefore not surprising that the pathogenesis of many complex diseases remain elusive, and therapeutic targets are lacking. The traditional approach that focus on a small number of molecules (e.g., genes or metabolites) or a single type of data (e.g., clinical or genetic) cannot address this complexity and heterogeneity. Integrative or systems biology approaches and network analysis can be used to leverage the strengths of data from multiple sources (e.g., genomics, metabolomics, epidemiology, clinical data) to achieve new insights into the pathobiology of complex diseases. Recent technological advances have enabled the production of vast amounts of diverse but related data with rich information that offer remarkable opportunities to understand biological processes involved in complex diseases and to transform medicine, yet at the same time present significant analytical challenges including how to effectively synthesize information from the tens of thousands of data points to identify important biomarkers with potential to serve as therapeutic targets. To alleviate this, we will develop and apply a suite of novel, robust, and powerful statistical and machine learning methods for the integration and interpretation of cross-sectional and longitudinal data from multiple sources. These models will also be used to define subpopulations of patients who have different prognoses or require different therapeutic approaches based on data from different sources. Further, we will make use of recent advances in network theory to model the complex multilateral relationships in molecular data from multiple sources. The proposed methods will be applied to several publicly available datasets and cohorts to ensure that we can generalize our work to other datasets and cohorts and thus increase the long-term impact of our research. The proposed research will also contribute valuable statistical and machine learning algorithms that will be broadly applicable to data from multiple sources and multiple cohorts and will be made available to the public free of charge.
项目摘要 许多疾病是复杂的,异质的,影响身体多个器官的条件,并依赖于 包括遗传、细胞、分子和环境因素在内的几个因素之间的相互作用。因此 毫不奇怪,许多复杂疾病的发病机制仍然难以捉摸,并且缺乏治疗靶点。 传统的方法集中在少量的分子(例如,基因或代谢物)或单一类型的 数据(例如,临床或遗传)不能解决这种复杂性和异质性。综合或系统生物学 方法和网络分析可用于平衡来自多个源的数据的强度(例如, 基因组学,代谢组学,流行病学,临床数据),以实现对复杂的病理生物学的新见解 疾病最近的技术进步使得能够产生大量不同但相关的数据 丰富的信息,提供了非凡的机会,了解复杂的生物过程, 疾病和改变医学,但同时提出了重大的分析挑战,包括如何 有效地综合成千上万个数据点的信息,以确定重要的生物标志物, 具有作为治疗靶点的潜力。为了缓解这一问题,我们将开发和应用一套新颖,强大, 以及强大的统计和机器学习方法,用于整合和解释横截面和 多个来源的纵向数据。这些模型还将用于定义以下患者亚群: 根据不同来源的数据,有不同的疾病或需要不同的治疗方法。此外,本发明还 我们将利用网络理论的最新进展来模拟分子中复杂的多边关系, 来自多个来源的数据。所提出的方法将适用于几个公开的数据集和队列 确保我们可以将我们的工作推广到其他数据集和群组,从而增加长期影响 我们的研究。拟议的研究还将贡献有价值的统计和机器学习算法 这将广泛适用于来自多个来源和多个队列的数据,并将提供给 公共免费。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sandra E Safo其他文献

Sandra E Safo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sandra E Safo', 18)}}的其他基金

Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
  • 批准号:
    10711864
  • 财政年份:
    2021
  • 资助金额:
    $ 35.15万
  • 项目类别:
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
  • 批准号:
    10274846
  • 财政年份:
    2021
  • 资助金额:
    $ 35.15万
  • 项目类别:
MultiViewPortal: Towards a Scalable Web Application for Multiview Learning
MultiViewPortal:面向多视图学习的可扩展 Web 应用程序
  • 批准号:
    10827749
  • 财政年份:
    2021
  • 资助金额:
    $ 35.15万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 35.15万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了