MultiViewPortal: Towards a Scalable Web Application for Multiview Learning
MultiViewPortal:面向多视图学习的可扩展 Web 应用程序
基本信息
- 批准号:10827749
- 负责人:
- 金额:$ 22.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-23 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAwardBehavioralBioinformaticsBiologicalBiological MarkersBiological ProcessCodeCommunitiesComplexComputer softwareComputersDataDatabasesDecentralizationDevelopmentDevicesDimensionsDiseaseFundingGenomicsGoalsGrantHigh Performance ComputingHuman MicrobiomeImageInterventionKnowledgeLanguageLearningMedicineMemoryMethodsModelingMolecularMolecular AnalysisMultiomic DataNational Institute of General Medical SciencesPatient CarePositioning AttributeProcessProductionProteomicsResearchResearch PersonnelResearch Project GrantsResourcesRunningServicesSoftware EngineeringTechnologyTestingTherapeutic InterventionUnited States National Institutes of Healthcloud basedcomplex datacomputing resourcescostcost effectivedata integrationdata portaldata visualizationdata-driven modeldisorder subtypeexperiencefeasibility testingflexibilityhigh dimensionalityhigh throughput analysisimprovedinnovationinsightinterestmachine learning methodmetabolomicsmolecular targeted therapiesmultiple data sourcesmultiple omicsnovelparent grantpatient stratificationphenotypic dataresponsestatistical and machine learningtooluser-friendlyweb appweb services
项目摘要
Abstract
Recent technological advances have enabled the production of vast amounts of diverse but related data (e.g.
genomics, metabolomics, proteomics) with rich information that offer remarkable opportunities to understand
biological processes involved in complex diseases and to transform medicine. It is now widely-recognized that
the mechanisms that underlie complex diseases are more likely to be unraveled by approaches that go beyond
analyzing each type of data separately. Analyzing these multifaceted data to obtain useful information and
knowledge is challenging because the data are complex, heterogeneous, and high-dimensional, and require
a considerable level of analytical sophistication. Most existing software for data integration that address some of
these analytical challenges are on-premises and tend to be decentralized, limiting ability to perform comprehensive
integrative analysis from anywhere and on any device. Further, they are based on languages that require
substantive knowledge in programming, which limits their wide-spread adoption by the research community.
The few existing web applications for data integration have limited capabilities in the types of analyses that
can be performed. As a first step towards providing a comprehensive, centralized data integration platform,
we have developed a web application in Shiny R and are hosting the application on shinyapp.io. However, the
compute and memory limitations of shinyapps.io severely constrain the problem size that can be executed. We
propose to explore new cloud technologies to enhance our existing workflows for integrating data from multiple
sources. Our web application, MultiviewPortal, will enable high-throughput analyses of molecular, imaging, and
phenotypic data; it will make it straightforward for all users to integrate data and it will facilitate users using data
from NIH-funded projects that might otherwise be complicated to retrieve, given the complexity of many data
portals. Ultimately, our portal has the potential to narrow the gap from raw molecular data to biological insights,
offer opportunity to expand the definition of complex diseases, and allow to stratify patients and identify those
who might benefit from targeted interventions.
摘要
最近的技术进步使得能够产生大量不同但相关的数据(例如,
基因组学、代谢组学、蛋白质组学),提供丰富的信息,
涉及复杂疾病的生物过程,并改变医学。现在人们普遍认识到,
复杂疾病背后的机制更有可能被超越这些机制的方法所揭示。
分别分析每种数据。分析这些多方面的数据,以获得有用的信息,
知识是具有挑战性的,因为数据是复杂的,异构的,高维的,需要
相当复杂的分析大多数现有的数据集成软件都可以解决以下问题:
这些分析挑战是内部部署的,往往是分散的,限制了执行全面
在任何地方和任何设备上进行集成分析。此外,它们基于需要
方案编制方面的实质性知识,这限制了研究界广泛采用。
用于数据集成的少数现有Web应用程序在分析类型方面的功能有限,
可以执行。作为提供全面、集中的数据集成平台的第一步,
我们已经在Shiny R中开发了一个Web应用程序,并将该应用程序托管在shinyapp.io上。但
shinyapps.io的计算和内存限制严重限制了可以执行的问题大小。我们
我建议探索新的云技术,以增强我们现有的工作流程,
源我们的网络应用程序MultiviewPortal将能够对分子、成像和生物信息进行高通量分析。
表型数据;它将使所有用户直接整合数据,并将方便用户使用数据
从NIH资助的项目,否则可能是复杂的检索,考虑到许多数据的复杂性
门户最终,我们的门户网站有可能缩小从原始分子数据到生物学见解的差距,
提供机会扩大复杂疾病的定义,并允许对患者进行分层,
他们可能会从有针对性的干预中受益。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a proteomic signature associated with severe disease for patients with COVID-19 using data from 5 multicenter, randomized, controlled, and prospective studies.
- DOI:10.1038/s41598-023-46343-1
- 发表时间:2023-11-20
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Multi-omic analysis reveals enriched pathways associated with COVID-19 and COVID-19 severity.
- DOI:10.1371/journal.pone.0267047
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Lipman D;Safo SE;Chekouo T
- 通讯作者:Chekouo T
mvlearnR and Shiny App for multiview learning.
- DOI:10.1093/bioadv/vbae005
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Integrative multi-omics approach for identifying molecular signatures and pathways and deriving and validating molecular scores for COVID-19 severity and status.
- DOI:10.1186/s12864-023-09410-5
- 发表时间:2023-06-12
- 期刊:
- 影响因子:4.4
- 作者:
- 通讯作者:
Developing A Baseline Metabolomic Signature Associated with COVID-19 Severity: Insights from Prospective Trials Encompassing 13 U.S. Centers.
- DOI:10.3390/metabo13111107
- 发表时间:2023-10-24
- 期刊:
- 影响因子:4.1
- 作者:Yang K;Kang Z;Guan W;Lotfi-Emran S;Mayer ZJ;Guerrero CR;Steffen BT;Puskarich MA;Tignanelli CJ;Lusczek E;Safo SE
- 通讯作者:Safo SE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandra E Safo其他文献
Sandra E Safo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandra E Safo', 18)}}的其他基金
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
- 批准号:
10711864 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
- 批准号:
10274846 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
Statistical and Machine Learning Methods to Address Biomedical Challenges for Integrating Multi-view Data
解决生物医学集成多视图数据挑战的统计和机器学习方法
- 批准号:
10650831 - 财政年份:2021
- 资助金额:
$ 22.2万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.2万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 22.2万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 22.2万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 22.2万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 22.2万 - 项目类别:
Standard Grant