Non-invasive seizure forecasting system using e-diaries, internal and external factors
使用电子日记、内部和外部因素的无创癫痫发作预测系统
基本信息
- 批准号:10524393
- 负责人:
- 金额:$ 18.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-05-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeApplied ResearchArtificial IntelligenceAutomobile DrivingBiometryBiosensorBrainCalibrationCessation of lifeClinicalDataData ScienceDevelopmentDiseaseDoseDrug resistanceElectroencephalographyEmergency department visitEpilepsyExerciseFoundationsFrightGoalsHeart RateHormonalHormonesHospitalizationHourHumidityImpact SeizuresInformaticsInjuryIntractable EpilepsyK-Series Research Career ProgramsKnowledgeLaboratoriesLocationMachine LearningMentorsMentorshipMethodsMissionMonitorMorbidity - disease rateNational Institute of Neurological Disorders and StrokeOutcome StudyParticipantPathway interactionsPatientsPatternPersonsPharmaceutical PreparationsPhysiciansPredispositionPublic HealthQuality of lifeReportingResearchResearch PersonnelResearch Project GrantsRiskRunningSafetySeizuresSleepSleep DeprivationSleep FragmentationsStressSystemTechniquesTechnologyTemperatureTemporal Lobe EpilepsyThe SunTimeTrainingUnited StatesValidationWeatherWorkWristagedartificial intelligence algorithmbasecohortcomorbiditycomputer sciencedeep learningdesigndiariesdigitalexperiencefollow-uphigh riskimprovedlongitudinal datasetmachine learning algorithmmedication compliancemeteorological datamortalitymultimodalityneglectnervous system disorderonline courseprospectiverisk predictionside effectskillssystematic reviewtooltool developmenttranslational impactwearable devicewearable sensor technologyweather patterns
项目摘要
This career development award will provide me with an opportunity to develop the needed skills to become an
independent investigator using advanced machine learning and large-scale clinical cohorts applied to epilepsy.
The research project centers on forecasting the risk of seizures non-invasively using electronic diaries (e-diaries)
and biosensor data. It is unknown if non-invasive seizure forecasting can be sufficiently accurate to have clinical
utility. My prior retrospective work suggests that using advanced machine learning algorithms to evaluate e-diary
data (i.e., internal factors), forecasts of seizure risk are more accurate than chance forecasts. It is unknown if
enhancing these forecasts using additional data from sleep biosensors, medication adherence, stress, weather
patterns, stress, and exercise (i.e., external factors) would improve the accuracy further. Preliminary data
suggest that this additional data may be valuable. For Aim 1, this project will prospectively validate the machine
learning algorithm to forecast seizure risk in a cohort of people with epilepsy using e-diaries alone (internal
factors). The forecasts will be compared with a rate-matched random forecast as a baseline. For Aim 2, the
forecasts will be enriched using data from a wearable biosensor, automated medication adherence, as well as
information about stress, hormonal cycles and weather (external factors). The expected outcome of this study is
a validated method with higher accuracy for forecasting seizure risk using non-invasive techniques. In addition,
this project includes educational objectives through mentorship and online courses and local coursework
designed to prepare for research independence. The main educational objectives are (1) developing skills in
advanced data science techniques, (2) managing a large clinical cohort, (3) build a strong
biostatistics/informatics foundation, and (4) professional development. Dr. Brandon Westover, one of the
foremost data science experts in the field of epilepsy, will serve as the primary mentor for this project. Additional
mentorship will come from Dr. Jimeng Sun, an expert in machine learning and computer science, as well as Dr.
Thomas Travison, an expert biostatistician and clinical trialist. My goal is to establish a state-of-the-art,
independent laboratory focused on data science applied to decrease morbidity and mortality from epilepsy.
这个职业发展奖将为我提供一个发展所需技能的机会,
使用先进的机器学习和大规模临床队列应用于癫痫的独立研究者。
该研究项目的中心是使用电子日记(e-diaries)非侵入性地预测癫痫发作的风险
和生物传感器数据。目前尚不清楚无创性癫痫发作预测是否足够准确,
效用我之前的回顾性研究表明,使用先进的机器学习算法来评估电子日记,
数据(即,内部因素),癫痫发作风险的预测比偶然预测更准确。不清楚是否
使用来自睡眠生物传感器、药物依从性、压力、天气的额外数据来增强这些预测
模式、压力和锻炼(即,外部因素)将进一步提高准确性。初步数据
这表明这些额外的数据可能是有价值的。对于目标1,该项目将前瞻性地验证机器
学习算法预测癫痫患者队列中癫痫发作风险仅使用电子日记(内部
因素)。这些预测将与作为基线的速率匹配随机预测进行比较。对于目标2,
预测将使用来自可穿戴生物传感器、自动药物依从性以及
有关压力、荷尔蒙周期和天气(外部因素)的信息。本研究的预期结果是
使用非侵入性技术预测癫痫发作风险的准确性更高的有效方法。此外,本发明还提供了一种方法,
该项目包括通过导师制、在线课程和本地课程实现教育目标
旨在为研究独立做准备。主要的教育目标是:(1)培养
先进的数据科学技术,(2)管理大型临床队列,(3)建立强大的
生物统计学/信息学基础;(4)专业发展。布兰登·韦斯特弗医生,
癫痫领域最重要的数据科学专家将担任该项目的主要导师。额外
导师将来自机器学习和计算机科学专家孙继孟博士,以及
托马斯崔维森,生物统计学家和临床试验专家。我的目标是建立一个最先进的
独立实验室专注于应用数据科学来降低癫痫的发病率和死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel M Goldenholz其他文献
Does deidentification of data from wearable devices give us a false sense of security? A systematic review
可穿戴设备数据的去标识化是否给了我们一种虚假的安全感?一项系统综述
- DOI:
10.1016/s2589-7500(22)00234-5 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:24.100
- 作者:
Lucy Chikwetu;Yu Miao;Melat K Woldetensae;Diarra Bell;Daniel M Goldenholz;Jessilyn Dunn - 通讯作者:
Jessilyn Dunn
Daniel M Goldenholz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Continuing Grant
Walkability and health-related quality of life in Age-Friendly Cities (AFCs) across Japan and the Asia-Pacific
日本和亚太地区老年友好城市 (AFC) 的步行适宜性和与健康相关的生活质量
- 批准号:
24K13490 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discovering the (R)Evolution of EurAsian Steppe Metallurgy: Social and environmental impact of the Bronze Age steppes metal-driven economy
发现欧亚草原冶金的(R)演变:青铜时代草原金属驱动型经济的社会和环境影响
- 批准号:
EP/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Research Grant
ICF: Neutrophils and cellular senescence: A vicious circle promoting age-related disease.
ICF:中性粒细胞和细胞衰老:促进与年龄相关疾病的恶性循环。
- 批准号:
MR/Y003365/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 18.98万 - 项目类别:
Research Grant














{{item.name}}会员




