Odor trail tracking: a new paradigm to unveil algorithms and neural circuits underlying active sensation and continuous decision making
气味踪迹追踪:揭示主动感觉和持续决策背后的算法和神经回路的新范例
基本信息
- 批准号:10524245
- 负责人:
- 金额:$ 273.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimalsAreaBehaviorBehavioralBilateralBrainBrain DiseasesBrain regionCOVID-19 pandemicComplexCouplingCuesCustomDataDecision MakingDepositionEnvironmentEsthesiaExhibitsFaceFeedbackGeneticHeadKnowledgeLaboratoriesLifeLightMeasurementMemoryModelingMolecularMotorMovementMusNeuronsNeurosciencesOdorsPaperPatternPhysiologicalPositioning AttributeProcessResearchResearch PersonnelRodentSamplingScienceSensoryShort-Term MemorySmell PerceptionStructureSystemTestingTheoretical StudiesUpdateViralanalytical methodbasecell typedriving behaviorexperienceexperimental studyinformation processinginsightmultimodalityneural circuitnovelpublic health relevancerelating to nervous systemtranscriptomicstreadmillvirtual realityway finding
项目摘要
Summary
Animals actively sample sensory information, which they combine with prior knowledge to make
decisions in a sensorimotor feedback loop. Aspects of this complex loop are often studied in
isolation, using trial structures and in simplified conditions such as head-restrained animals in
virtual reality. Studying an ethologically relevant, natural behavior in the laboratory can offer
deeper insights about the behavioral strategies and their mechanistic neural implementation.
Odor trail tracking is one such behavior, observed in many terrestrial animals including mice,
and involves continuous re-orientation along the trail. The acquisition of odor cues is heavily
guided by active sampling via sniffing and body movements, which introduces a strong coupling
between sensation and motor actions. Theoretical studies hint at multi-modal strategies based
on bilateral sampling, temporal integration and the use of internal models, whose relative
contributions remain unclear. Here, a team of three PIs with complementary expertise, proposes
to dissect the algorithmic and neural basis of olfactory trail tracking, which can offer deeper
insights into active sensation, spatial navigation and continuous decision making. Using
behavioral, physiological, molecular and analytical methods, the PIs will test algorithmic
hypotheses and identify neural circuits guided by the following aims. In Aim 1, they will
investigate the strategies exhibited by mice during trail tracking and identify brain regions
supporting this behavior. A high-throughput adaptive system will be used to characterize the
behavior of mice while tracking odor trails in a custom-built treadmill. In Aim 2, the PIs will
uncover the neural circuits and cell types in brain regions involved in trail tracking. They will use
cell-type targeted measurement of neural activity, viral tracing and transcriptomics in olfactory
cortical areas to uncover patterns of activity and neural connectivity supporting neural
computations necessary for trail tracking. In Aim 3, the PIs will elucidate, theoretically and
computationally, behavioral strategies that mice use to track odor trails, and their underlying
neural algorithms. They will use experimental data of Aim 1 to assess the validity of a novel
theoretical framework, specifically in the context of sector search strategies and bilateral
processing by rodents. Experimental data of Aim 2 will be used to unveil the neural dynamics
and connectivity of sub-circuits that implement the algorithms driving behavior.
总结
动物会主动采集感觉信息,然后将这些信息与先前的知识联合收割机结合起来,
感觉运动反馈回路中的决定。这个复杂循环的各个方面经常在
隔离,使用试验结构和简化条件下,如头部限制的动物,
虚拟现实在实验室里研究一种与动物行为学相关的自然行为,
更深入地了解行为策略及其机械神经实现。
气味跟踪就是这样一种行为,在包括老鼠在内的许多陆生动物中观察到,
并且包括沿轨迹沿着连续的重新定向。气味线索的获得是严重的
通过嗅探和身体运动进行主动采样,这引入了强耦合
感觉和运动之间的联系理论研究暗示基于多模式战略
双边抽样,时间整合和使用内部模型,其相对
捐款情况尚不清楚。在这里,一个由三名专业知识互补的PI组成的团队建议
剖析嗅觉跟踪的算法和神经基础,可以提供更深入的
对主动感觉、空间导航和连续决策的深入了解。使用
行为,生理,分子和分析方法,PI将测试算法
假设和识别由以下目标指导的神经回路。在目标1中,他们将
研究小鼠在跟踪过程中表现出的策略,并识别大脑区域
支持这种行为。高通量自适应系统将用于表征
老鼠在定制的跑步机上追踪气味踪迹时的行为。在目标2中,PI将
揭示神经回路和细胞类型的大脑区域参与跟踪线索。他们将使用
嗅觉神经活动的细胞类型靶向测量、病毒示踪和转录组学
皮层区域,以揭示活动模式和神经连接,支持神经
跟踪所需的计算。在目标3中,PI将从理论上阐明,
在计算上,老鼠用来追踪气味踪迹的行为策略,以及它们的潜在的
神经算法他们将使用目标1的实验数据来评估小说的有效性
理论框架,特别是在部门搜索战略和双边
由啮齿动物加工。Aim 2的实验数据将用于揭示神经动力学
以及实现算法驱动行为的子电路的连通性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new angle on odor trail tracking.
- DOI:10.1073/pnas.2121332119
- 发表时间:2022-01-18
- 期刊:
- 影响因子:11.1
- 作者:Jayakumar S;Murthy VN
- 通讯作者:Murthy VN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Dulac其他文献
Catherine Dulac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Dulac', 18)}}的其他基金
Molecular and genetic dissection of brain circuits controlling fever
控制发烧的脑回路的分子和遗传解剖
- 批准号:
10373051 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Systems-Level and in Situ Transcriptomics Deconstruction of Neural Circuits Underlying Sensorimotor Transformation in an Innate Behavior
先天行为中感觉运动转化的神经回路的系统级和原位转录组学解构
- 批准号:
10709855 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Molecular and genetic dissection of brain circuits controlling fever
控制发烧的脑回路的分子和遗传解剖
- 批准号:
10589104 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Center for Integrated Multi-modal and Multi-scale Nucleome Research
综合多模式和多尺度核组研究中心
- 批准号:
10678954 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Center for Integrated Multi-modal and Multi-scale Nucleome Research
综合多模式和多尺度核组研究中心
- 批准号:
10269034 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Center for Integrated Multi-modal and Multi-scale Nucleome Research
综合多模式和多尺度核组研究中心
- 批准号:
10458025 - 财政年份:2020
- 资助金额:
$ 273.03万 - 项目类别:
Microcircuits underlying murine parental behavior
小鼠父母行为背后的微电路
- 批准号:
10227959 - 财政年份:2015
- 资助金额:
$ 273.03万 - 项目类别:
Microcircuits underlying murine parental behavior
小鼠父母行为背后的微电路
- 批准号:
10461107 - 财政年份:2015
- 资助金额:
$ 273.03万 - 项目类别:
Microcircuits underlying murine parental behavior
小鼠父母行为背后的微电路
- 批准号:
9751346 - 财政年份:2015
- 资助金额:
$ 273.03万 - 项目类别:
Microcircuits underlying murine parental behavior
小鼠父母行为背后的微电路
- 批准号:
10674853 - 财政年份:2015
- 资助金额:
$ 273.03万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 273.03万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 273.03万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 273.03万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 273.03万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 273.03万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




