AP-1 as a transcriptional regulator of AT2 cell reversible activation during lung injury response
AP-1 作为肺损伤反应期间 AT2 细胞可逆激活的转录调节因子
基本信息
- 批准号:10535199
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2025-09-19
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAcute Lung InjuryAddressAlveolarAlveolar Cell Type IAreaBenchmarkingCOVID-19COVID-19 pandemicCause of DeathCell DeathCell Differentiation processCell ProliferationCellsChIP-seqChemical InjuryChromatinComplementComplement ActivationCountryDataDetectionDistalEpigenetic ProcessEpithelialFOSB geneGasesGenetic TranscriptionGenomic approachGoalsGrowthHeterogeneityIn SituInfectionInhalationInjuryInterventionKineticsLabelLightLobeLower Respiratory Tract InfectionLungLung AdenocarcinomaLung diseasesMalignant neoplasm of lungMapsMediatingMicroscopyModelingMolecularMusNatural regenerationNatureNuclearPersonsPhasePneumonectomyPoisonProliferatingRecoveryRespiratory Tract InfectionsRiskRoleRunningSTEM fieldSendai virusTestingThree-Dimensional ImageTimeTissuesToxinTranscription Factor AP-1Transcriptional RegulationViralVirus DiseasesXCL1 genealveolar epitheliumalveolar type II cellcombatconditional knockoutepigenetic regulationepigenomicsepithelial injurygenetic approachimaging approachinjured airwayinjury and repairinjury burdenlung injurylung lobelung regenerationmembermouse modelnovelparainfluenza viruspathogenrepairedresponse to injurysingle cell analysisspatiotemporalstem cell biologystem cell functionstem cell populationstem cellssurfactanttissue regenerationtissue repairtraining opportunitywound healing
项目摘要
PROJECT SUMMARY/ABSTRACT
Lower respiratory infections were the fourth leading cause of death worldwide for nearly twenty years, and in
2019 with the onset of the COVID-19 pandemic, respiratory infections quickly rose to the leading cause of
death in many countries killing over 5 million people worldwide thus far. Our lungs are equipped with stem cells
to help us recover from lung related injury caused by inhaling toxins and pathogens. However, like in many
COVID-19 cases, the stem cells cannot always handle the injury burden. Alveolar type II (AT2) cells are
facultative stem cells of the lung that secrete surfactant and aid with gas exchange. During injury, AT2 cells
withdraw from homeostatic quiescence to repair damage through proliferation and differentiation into alveolar
type I (AT1) cells, then revert to quiescence when the epithelium is restored. The mechanism behind AT2 cell
reversible activation is unclear. To better understand this mechanism, we modeled respiratory injury in mice
through a murine parainfluenza virus known as Sendai virus. Lineage tracing of AT2 cells and proliferation
revealed that AT2 cells not only activate to perform in situ wound repair, but also cluster and proliferate at
regions away from damage, specific to the edges of airways and vessels, as well as the most distal border of
the tissue, representing de novo growth. ATAC-sequencing was performed on AT2 cells from infected mice at
the peak of AT2 cell proliferation and in the recovery phase after returning to quiescence. AT2 cells gained
accessibility of AP-1 motifs during injury repair and subsequently lost accessibility for AP-1 motifs at recovery.
The hypothesis of this proposal is that AP-1 transcriptionally regulates AT2 cell activation to induce
both in situ and de novo repair during lung injury response. We will first identify the spatiotemporal
activation of AT2 cells during infection through lineage tracing AT2 cell proliferation and differentiation for
detection with light sheet microscopy to generate 3D images for deciphering if the proposed in situ and de
novo regions of activation are truly distinct. We will also perturb an airway stem cell population known to
contribute to in situ wound repair to study region specific changes in AT2 cell activation when airway
assistance is disrupted (Aim1). Second, we will investigate the regulatory mechanism in AT2 cell activation by
looking at the kinetics of epigenetic change over time through injury response with bulk ATAC and single-cell
mutiome-sequencing. We will also examine the role of AP-1 through AT2 cell specific conditional knockout of
FOSB to examine its impact on AT2 cell activation and repair (Aim2). This study will help characterize the
novel concept of in situ and de novo AT2 cell activation as well as the undiscovered epigenetic and
transcriptional regulation of lung regeneration.
项目摘要/摘要
近20年来,下呼吸道感染是全球第四大死亡原因,在
2019年随着新冠肺炎大流行的爆发,呼吸道感染迅速上升为导致
到目前为止,许多国家的死亡导致全球500多万人死亡。我们的肺里有干细胞
帮助我们从吸入毒素和病原体引起的肺损伤中恢复过来。然而,就像在许多情况下一样
在新冠肺炎案例中,干细胞并不总是能承担起损伤的负担。肺泡II型(AT2)细胞
肺的兼性干细胞,分泌表面活性物质并帮助气体交换。在损伤过程中,AT2细胞
通过增殖和分化为肺泡来修复损伤
I型(AT1)细胞,然后在上皮恢复时恢复到静止状态。AT2细胞背后的机制
可逆激活尚不清楚。为了更好地理解这一机制,我们模拟了小鼠的呼吸损伤。
通过一种被称为仙台病毒的小鼠副流感病毒。AT2细胞的谱系追踪与增殖
研究发现,AT2细胞不仅被激活以进行原位创伤修复,而且在
远离损坏的区域,具体到呼吸道和血管的边缘,以及
代表新生生长的组织。对感染小鼠的AT2细胞进行ATAC测序
AT2细胞增殖高峰,恢复后处于恢复期。AT2细胞获得
AP-1基序在损伤修复过程中的可及性,随后在恢复时失去AP-1基序的可及性。
这一建议的假设是AP-1转录调节AT2细胞的激活以诱导
肺损伤反应中的原位修复和从头修复。我们将首先确定时空
AT2细胞在感染过程中的活化通过对AT2细胞增殖和分化的谱系追踪
用光片显微镜检测,生成3D图像,用于破译是否建议原位和De
新星的激活区域确实是截然不同的。我们还将扰乱已知的呼吸道干细胞种群
有助于原位伤口修复,以研究AT2细胞在呼吸道时激活的区域特异性变化
援助中断(Aim1)。第二,我们将研究AT2细胞激活的调节机制
用块状ATAC和单细胞观察表观遗传随时间变化的动力学
多组测序。我们还将研究AP-1通过AT2细胞特异性条件性敲除
FosB检测其对AT2细胞激活和修复(AIM2)的影响。这项研究将有助于描述
原位和从头激活AT2细胞的新概念以及未发现的表观遗传学和
肺再生的转录调控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANNE LYNCH其他文献
ANNE LYNCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANNE LYNCH', 18)}}的其他基金
AP-1 as a transcriptional regulator of AT2 cell reversible activation during lung injury response
AP-1 作为肺损伤反应期间 AT2 细胞可逆激活的转录调节因子
- 批准号:
10843725 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 4.68万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 4.68万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 4.68万 - 项目类别: