Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
基本信息
- 批准号:10536912
- 负责人:
- 金额:$ 5.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-05 至 2026-08-04
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D ImagingAddressAffectAge of OnsetAreaArtificial IntelligenceAwardBiological MarkersBiomechanicsBiomedical EngineeringBirthCardiacCardiomyopathiesCause of DeathChildhoodClinicalClinical ResearchClinical TreatmentClinical TrialsCollaborationsComputer AnalysisDataData ScienceData SetDatabasesDiagnosticDiseaseDisease ProgressionDoctor of PhilosophyDuchenne cardiomyopathyDuchenne muscular dystrophyEarly DiagnosisEarly identificationEarly treatmentEngineeringEvaluationFellowshipFutureGenetic DiseasesHeartHeart DiseasesImageImage AnalysisIncidenceIndianaIndividualInstitutionKineticsLeftLengthLinkLongevityMapsMeasuresMedicalMentorshipMethodsMuscle WeaknessNational Heart, Lung, and Blood InstituteNeuromuscular DiseasesOnset of illnessOutcome MeasurePatient-Focused OutcomesPatientsPatternPediatric HospitalsPediatric cardiologyPhenotypePhysiciansPhysiologyPlayPopulationPopulation StudyPrognosisProtocols documentationQuality of lifeRegistriesResearchResearch TrainingRiskRoleScientistStandardizationSymptomsTechniquesTeenagersTimeTrainingUniversitiesVentricularVulnerable PopulationsWorkalgorithm developmentautomated analysisautomated segmentationbiomarker developmentboyscardiac magnetic resonance imagingcardiovascular imagingclinical centerconvolutional neural networkdata registrydeep learningdeep learning algorithmdeep neural networkearly onsetfrontierheart functionheart imagingimaging biomarkerimaging facilitiesimaging modalityimprovedimproved outcomeinnovationinsightkinematicsmalemedical schoolsmortalitynovelnovel diagnosticsnovel therapeutic interventionpatient populationpatient stratificationpediatric cardiologistpredictive markerpreventrepositoryrisk stratificationspatiotemporaltreatment response
项目摘要
PROJECT SUMMARY/ABSTRACT
Heart disease is the leading cause of death for individuals with Duchenne muscular dystrophy (DMD). DMD is
a devastating and progressive neuromuscular disease with no known cure. This X-linked genetic disorder
affects nearly 1 in 5000 boys and manifests as debilitating muscle weakness and progressive cardiomyopathy
(CM). While CM in some individuals with DMD progresses rapidly and fatally in their teenage years, others can
live relatively symptom-free into their thirties or forties. Early identification and treatment can improve quality
and length of life, but currently, there are no standard imaging biomarkers that can detect early onset or rapidly
progressing DMD CM. Additionally, research in this area has lagged due to small population study sizes and
limited standardized imaging data. To that end, this project will utilize the largest standardized imaging data
registry of DMD CM created through the collaboration of 6 of the largest medical institutions with DMD CM
expertise. Following the objective set up by the National Heart, Lung, and Blood Institute (NHLBI) to
“develop and optimize novel diagnostic and therapeutic strategies to prevent, treat, and cure HLBS
diseases” we propose the following Aim: 1) Identify imaging biomarkers of DMD CM onset and progression
using novel image analysis. Utilizing recently developed methods of spatiotemporal analysis of 4D (3D plus
time) cardiac imaging data, we can evaluate localized kinematic parameters in the heart that may be sensitive
to subtle changes in disease physiology. With this project we also follow a second major objective set forth by
NHBLI to “Leverage emerging opportunities in data science to open new frontiers in HLBS research”
through another Aim: 2) Apply deep learning neural network to DMD registry to evaluate CM onset and
progression. Utilizing the large DMD CM imaging registry, we will apply deep learning techniques for
automated segmentation and analysis of cardiac parameters to evaluate patterns of early-onset and rapid
progression. These results will help to bridge a crucial gap in optimizing clinical treatment for a devastating
pediatric disease and pave the way for future research and innovation through the definition of robust imaging
This fellowship research and training will be carried out at Purdue
University under the direct mentorship of Craig Goergen, PhD who is a leading expert in cardiovascular
imaging and biomechanics research and at Indiana University School of Medicine with Larry Markham, MD,
Division Chief of Pediatric Cardiology and renowned physician scientist with a focus on DMD CM. Guang Lin,
PhD (Purdue University), a data science expert, will provide expertise in the deep learning algorithm
development. Han Kor, MD (Nationwide Children’s Hospital), May Ling Mah, MD (Nationwide Children’s
Hospital), and Jonathan Soslow, MD (Vanderbilt School of Medicine) are all practicing pediatric cardiologists
with expertise in DMD cardiac imaging and will provide access to data, clinical insight, training, and mentorship
for this project.
biomarkers and clinical trial endpoints.
项目摘要/摘要
心脏病是杜氏肌营养不良症(DMD)患者的主要死因。DMD是
一种毁灭性和进行性的神经肌肉疾病,目前尚无治愈方法。这种X连锁的遗传病
每5000名男孩中就有1人患病,表现为衰弱的肌肉无力和进行性心肌病
(厘米)。虽然一些DMD患者的CM在十几岁时进展迅速并致命,但另一些人可以
相对无症状地活到三四十岁。及早发现和治疗可以提高质量
和寿命,但目前还没有标准的成像生物标记物可以检测到早期或快速发作
进展中的DMD CM。此外,这一领域的研究由于人口研究规模小和
有限的标准化成像数据。为此,该项目将利用最大的标准化成像数据
由6家最大的医疗机构与DMD CM合作创建的DMD CM注册
专业知识。遵循国家心肺血液研究所(NHLBI)设定的目标
开发和优化新的诊断和治疗策略以预防、治疗和治愈HLBS
我们提出的目标如下:1)确定DMD CM发生和发展的影像生物标志物
使用新颖的图像分析。利用最新开发的4D(3D PLUS)时空分析方法
时间)心脏成像数据,我们可以评估心脏中可能是敏感的局部运动学参数
疾病生理上的细微变化。在这个项目中,我们还遵循了第二个主要目标
NHBLI将“利用数据科学领域的新机遇,开拓HLBS研究的新领域”
通过另一个目的:2)将深度学习神经网络应用于DMD注册,以评估CM的发病和
进步。利用大的DMD CM成像注册表,我们将应用深度学习技术
自动分割和分析心脏参数以评估早发和快速发作的类型
进步。这些结果将有助于弥合在优化毁灭性疾病临床治疗方面的关键差距
并通过稳健成像的定义为未来的研究和创新铺平道路
该奖学金的研究和培训将在普渡大学进行。
在克雷格·戈尔根博士的直接指导下的大学,他是心血管领域的领先专家
成像和生物力学研究,并在印第安纳大学医学院与拉里·马克汉姆医学博士,
儿科心脏科主任,著名内科科学家,专注于DMD CM。广林,
数据科学专家普渡大学(PHD)将提供深度学习算法方面的专业知识
发展。韩高,医学博士(全国儿童医院),马美玲,医学博士(全国儿童医院
医院)和乔纳森·索斯洛医学博士(范德比尔特医学院)都是儿科心脏病执业医生
拥有DMD心脏成像方面的专业知识,并将提供访问数据、临床洞察、培训和指导
为了这个项目。
生物标记物和临床试验终点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Conner Earl其他文献
Conner Earl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Conner Earl', 18)}}的其他基金
Spatiotemporal and Deep Learning Analysis of Cardiac Imaging for Predictive Risk Stratification in Duchenne Muscular Dystrophy
心脏成像的时空和深度学习分析用于杜氏肌营养不良症的预测风险分层
- 批准号:
10833464 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 5.43万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 5.43万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 5.43万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 5.43万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 5.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 5.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




