The Leading Evaluations to Advance VA's Response to National Priorities (LEARN) Evidence-Based Policy Evaluation Center
推动退伍军人管理局响应国家优先事项的领先评估 (LEARN) 循证政策评估中心
基本信息
- 批准号:10536561
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaAttentionBudgetsCaringCharacteristicsDataDecision MakingEffectivenessElectronic Health RecordEmployeeEnsureEvaluationEvaluation ResearchFeedbackFosteringFoundationsGoalsHealth systemHealthcareHealthcare SystemsHomeHomelessnessImpact evaluationKnowledgeLeadershipLearningMentorsMethodsModernizationOutcomePersonal SatisfactionPoliciesPositioning AttributePostdoctoral FellowProcessProgram EvaluationProviderQuality of CareResearch PersonnelResourcesServicesStrategic PlanningTimeTrustUnited StatesVariantVeteransWomen&aposs Healthbaseburnoutcareercontextual factorsdata infrastructuredesigndiversity and equityevidence baseevidence based guidelinesexperiencehealth datahealth disparityhealth equityimplementation evaluationimprovedinnovationoperationprogramsresponsesocial health determinantstheoriesvirtual healthcare
项目摘要
Background and Priority Topics: Rigorous evaluation is foundational for evidence-based policymaking,
which optimizes value and operational efficiencies. We propose to establish the Leading Evaluations
to Advance VA’s Response to National Priorities (LEARN) Evidence-Based Policy Evaluation Center, which
will partner with VA leaders to design and conduct rigorous and responsive evaluations, and disseminate
evaluation findings, to influence continual improvements in VA policies and programs. LEARN will conduct and
build VA’s capacity to perform evaluations aligned with six VA priorities: women’s health initiatives;
effectiveness and implementation of programs to eliminate homelessness among Veterans; strategies to
address Veteran health disparities and social determinants of health; reducing burnout and improving
experience and outcomes among VA employees and trainees; Veteran experience and quality of virtual care
options; and electronic health record modernization.
Specific Aims: LEARN will: (1) design evaluation plans that respond to priorities of senior VA leadership and
other United States executive and legislative leaders, in partnership with VA program offices and the VA
Partnered Evidence-based Policy Resource Center; (2) conduct timely and rigorous evaluations of VA policies
and programs, in partnership with program partners and policymakers, to fulfill core requirements of the
Foundations for Evidence-based Policymaking Act of 2018; (3) support continual improvements in VA policies
and programs through dissemination of evaluation results and evidence-based recommendations to internal
and external stakeholders; and (4) expand capacity and expertise among VA investigators, staff, and academic
collaborators to design and conduct evaluations of VA policies and programs, with attention to supporting early
career investigators and expanding investigator diversity, equity, and inclusion.
Methods: To conduct high-impact evaluations, LEARN will draw upon a broad network of 59 investigators who
are topic and methods experts within VA and LEARN’s academic affiliates. LEARN will also build on over 30
years of partnered evaluation expertise, with over 20 national program offices, in its home at the Center for
Healthcare Innovation, Implementation, and Policy (CSHIIP). Guided by the Learning Healthcare System
framework and the QUERI Roadmap, LEARN will conduct partnered, theory-based evaluations, using VA’s
robust health data infrastructure, rapid qualitative analyses, and mixed-method approaches, that assess the
implementation, effectiveness, efficiency, and overall impacts (e.g., magnitude and scope of intended and
unintended consequences) of VA policies and programs. Consistent with VA’s Strategic Plan, LEARN will
assess the extent to which policies or programs advance VA’s goals of improving Veteran access, choice,
customer service, trust, outcomes, and health equity, while optimizing care quality, operational efficiencies and
promoting provider well-being and workforce stability. LEARN evaluations will also study variations in
implementation and impacts across groups and settings (e.g., Veteran and facility characteristics), contextual
factors that may influence these variations, and strategies for promoting policy or program implementation.
LEARN will also communicate with, and receive feedback from, stakeholders throughout the evaluation
process. LEARN will concurrently mentor a diverse group of post-doctoral fellows and early-career
investigators, aiming to foster a VA investigator pipeline for conducting rigorous and responsive evaluations.
Impact: LEARN evaluations will position VA and external leaders to proactively engage legislative and
executive branch stakeholders in rich policy discussions to ensure the best use of VA resources to meet the
needs of Veterans. With knowledge from such evaluations integrated into VA policy and program decision-
making, the VA learning healthcare system can engage in evidence-based continual improvement and
innovation that optimizes VA care.
背景和优先主题:严格的评价是循证决策的基础,
从而优化价值和运营效率。我们建议建立领导评价
推进VA对国家优先事项的反应(LEARN)基于证据的政策评估中心,
我将与退伍军人事务部领导合作,设计和进行严格和反应迅速的评估,并传播
评估结果,以影响VA政策和计划的持续改进。LEARN将进行和
建立退伍军人事务部的能力,以执行与退伍军人事务部六个优先事项相一致的评价:妇女健康倡议;
消除退伍军人无家可归现象的方案的有效性和执行情况;
解决退伍军人的健康差距和健康的社会决定因素;减少倦怠和改善
VA员工和受训者的经验和成果;退伍军人的经验和虚拟护理的质量
电子健康档案现代化。
具体目标:LEARN将:(1)设计评估计划,以响应高级VA领导的优先事项,
其他美国行政和立法领导人,与退伍军人事务部项目办公室和退伍军人事务部合作,
合作伙伴循证政策资源中心;(2)对退伍军人事务政策进行及时和严格的评估
和方案,与方案伙伴和决策者合作,以满足
2018年循证决策法基础;(3)支持VA政策的持续改进
通过将评价结果和循证建议传播给内部
和外部利益相关者;(4)扩大VA调查人员,工作人员和学术人员的能力和专业知识
合作者设计和进行VA政策和计划的评估,注意支持早期
职业调查员和扩大调查员的多样性,公平性和包容性。
方法:为了进行高影响力的评估,LEARN将利用由59名研究人员组成的广泛网络,
是VA和LEARN学术分支机构的主题和方法专家。LEARN还将建立在30多个
多年的合作评估专业知识,与20多个国家计划办事处,在其家中的中心,
医疗创新,实施和政策(CSHIIP)。以学习型医疗保健系统为指导
框架和QUERI路线图,LEARN将使用VA的
强大的健康数据基础设施,快速定性分析和混合方法,评估
实施、有效性、效率和总体影响(例如,的规模和范围,
(二)政策和计划的不确定性。与VA的战略计划一致,LEARN将
评估政策或计划在多大程度上推进VA改善退伍军人准入,选择,
客户服务、信任、结果和健康公平,同时优化护理质量、运营效率和
促进供应商福祉和员工队伍稳定。LEARN评估还将研究
跨群体和跨环境的实施和影响(例如,退伍军人和设施特征),上下文
可能影响这些变化的因素,以及促进政策或方案实施的战略。
LEARN还将在整个评估过程中与利益攸关方进行沟通,并从利益攸关方获得反馈
过程LEARN将同时指导一组不同的博士后研究员和早期职业生涯
调查员,旨在培养一个VA调查员管道进行严格的和响应的评价。
影响:LEARN评估将使VA和外部领导人能够积极参与立法和
行政分支利益相关者在丰富的政策讨论,以确保最佳利用VA资源,以满足
退伍军人的需要。从这些评估中获得的知识被整合到退伍军人事务部的政策和计划决策中-
使,VA学习医疗保健系统可以从事以证据为基础的持续改进,
优化VA护理的创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristina Marie Cordasco其他文献
Kristina Marie Cordasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristina Marie Cordasco', 18)}}的其他基金
Implementing and sustaining Critical Time Intervention (CTI) in case management programs for homeless-experienced Veterans
在针对无家可归退伍军人的案例管理计划中实施和维持关键时间干预 (CTI)
- 批准号:
10419848 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Improving patient-centered care coordination for high-risk Veterans in PACT
在 PACT 中改善高危退伍军人以患者为中心的护理协调
- 批准号:
9075372 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Literacy- Compensatory Strategies and Resources of Older Latinos with Diabetes
患有糖尿病的老年拉丁美洲人的识字-补偿策略和资源
- 批准号:
7849974 - 财政年份:2009
- 资助金额:
-- - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
The attention area estimation and safety evaluation of BCI using SSVEP
基于SSVEP的BCI注意力区域估计和安全性评估
- 批准号:
26870684 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8189126 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8217067 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8423034 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
7588129 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Study on Land Use Control of Urbanization Control Area which paid attention to District where eased Development Permission System
关注放宽开发许可制度区的城镇化控制区土地利用控制研究
- 批准号:
19760423 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Synthetic research about restructuring of the dialect, area word education that it paid attention to the communication consciousness, function
注重交际意识、功能的方言、方言教育重构综合研究
- 批准号:
15330183 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changing sea levels and (semi-)terrestrial landscape development in the Baltic Sea coastal area, with special attention to the role of the Darss Sill
波罗的海沿岸地区的海平面变化和(半)陆地景观发展,特别关注达斯海床的作用
- 批准号:
5385409 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Units














{{item.name}}会员




