VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Phenotypes of Persistent Comorbidity in Postâ9/11 Era Veterans with mTBI
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:后 9/11 时代患有 mTBI 退伍军人持续合并症的表型
基本信息
- 批准号:10534112
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAreaBehaviorBrain InjuriesCaringCharacteristicsChronicChronic CareDataData SourcesEpidemiologyFunctional disorderIndividualInjuryInpatientsLearningMental HealthMethodsMilitary PersonnelModelingNerve DegenerationNervous System TraumaNeurodegenerative DisordersNeurosecretory SystemsOutcomeOutpatientsPainPathway interactionsPharmacy facilityPhenotypePrevalenceProcessPsychological reinforcementRegistriesRiskScienceSelf-Injurious BehaviorSeveritiesSleepSourceSubstance Use DisorderSupport SystemTextTraumaVeteransWorkblast exposurecohortcomorbiditydeep learningdeep learning modeleconomic outcomehealth dataimprovedinterestlongitudinal analysismild traumatic brain injurymilitary health systemneurosensorypost 9/11psychologicscreeningwarfighter
项目摘要
The Chronic Effects of Neurotrauma Warfighter Epidemiology Cohort was developed to identify
phenotypes of comorbidity among deployed Post-9/11 Veterans in order to compare emergence
of neurosensory, neurodegenerative, pain, and mental health comorbidity in Veterans TBI. The
LIMBIC extension of the Warfighter Epidemiology Cohort will extend the work begun by CENC
in which we identified a cohort of Post-9/11 Veterans and identified comorbidity phenotypes. We
also obtained DoD trauma registry (DODTR) data, where available, and Military Health System
(MHS) inpatient, outpatient, and pharmacy data that was included in the DoD Mental Health
Data Cube. We now propose to expand upon this important data source for over 600,000
deployed SM’s to include a broader cohort of Post-9/11 era (deployed and nondeployed
Veterans and additional data sources that provide unique opportunities to examine long-term
comorbidity phenotypes and develop risk models for comorbidities of interest such as
neurodegenerative disease, SUD, psychological comorbidities, and self-harm behaviors.
These data will allow us to accomplish the following specific aims:
Aim 1: Using “all sources” TBI severity algorithm and NLP/text embedding methods, identify
phenotypes of mTBI in DoD and DoD+VA data that incorporate acute injury, mechanism of
injury, and blast exposure.
Aim 2: Identify prevalence of key comorbidities and outcomes at baseline, before and after
mTBI exposure, and in VA (where relevant) and compare those rates by TBI severity and
study group.
Aim 3: Use deep learning models that incorporate mTBI phenotype, acute and chronic
treatment approaches, and emergence of diverse comorbidities to develop risk scores for
poor military outcomes and developing key comorbidities.
Aim 4: Use deep learning models to identify optimal processes of care for mTBI.
We will use data in DaVINCI to identify a cohort of Veterans who receive longitudinal VA care
(at least once a year for three or more years between FY2002 and FY19 (at least one of which is
after 2007 when TBI screening was mandated. We will also identify individuals who did not
receive VA care. We will then categorize those with and without VA care as deployed and not
deployed, creating four study groups: a) deployed with VA care; b) deployed without VA care; c)
not deployed with VA care; d) not deployed without VA care. We will compile VA and DoD data
sources and identify key comorbidities (Neuroendocrine dysfunction, substance use disorder,
mental health conditions, pain conditions, sleep conditions, self-harm behaviors) and TBI
characteristics. Those data will be used for machine/deep learning models that will develop TBI
phenotypes, comorbidity phenotypes, and model risk scores for developing key comorbidities,
and optimal processes of care for mTBI.
Conducting these analyses for these four study groups will inform TBI pathways of care and
illuminate specific target areas to improve acute TBI care and subsequent support systems for
chronic care following TBI.
神经创伤的慢性影响战士流行病学队列的发展,以确定
9/11事件后部署的退伍军人中的共病表型,以比较
神经感觉、神经退行性、疼痛和心理健康共病的研究。的
作战人员流行病学队列的LIMBIC扩展将扩展CENC开始的工作
在该研究中,我们确定了一组9/11后退伍军人,并确定了共病表型。我们
我还获得了国防部创伤登记处(DODTR)的数据(如果有的话),以及军事卫生系统
(MHS)住院病人、门诊病人和药房数据,这些数据包括在国防部精神卫生部门的数据库中。
数据立方体我们现在建议将这个重要的数据源扩展到60多万个
部署SM以包括更广泛的后9/11时代队列(部署和未部署
退伍军人和其他数据源,提供独特的机会,以检查长期
合并症表型,并为关注的合并症开发风险模型,例如
神经退行性疾病、SUD、心理共病和自残行为。
这些数据将使我们能够实现以下具体目标:
目标1:使用“所有来源”TBI严重程度算法和NLP/文本嵌入方法,识别
DoD和DoD+VA数据中的mTBI表型,包括急性损伤、
受伤和爆炸暴露
目的2:确定基线、治疗前后关键合并症的患病率和结局
mTBI暴露和VA(相关时),并按TBI严重程度和
学习小组。
目标3:使用包含mTBI表型、急性和慢性的深度学习模型
治疗方法,以及各种合并症的出现,以制定风险评分,
不良的军事结果和发展中的关键合并症。
目标4:使用深度学习模型来确定mTBI的最佳护理流程。
我们将使用DaVINCI中的数据来确定接受纵向VA护理的退伍军人队列
(at在2002财年至2019财年之间的三年或三年以上,每年至少一次(其中至少一年是
在2007年强制进行创伤性脑损伤筛查之后我们还将确定那些没有
接受护理。然后,我们将那些有和没有VA护理分类为部署和不部署
展开,创建4个研究组:a)展开VA护理; B)未展开VA护理; c)
未在VA护理下展开; d)未在无VA护理下展开。我们会收集退伍军人事务部和国防部的数据
来源和识别关键合并症(神经内分泌功能障碍,物质使用障碍,
心理健康状况、疼痛状况、睡眠状况、自残行为)和TBI
特色这些数据将用于开发TBI的机器/深度学习模型
表型、合并症表型和发展关键合并症的模型风险评分,
和最佳的mTBI护理流程。
对这四个研究组进行这些分析将为TBI的护理途径提供信息,
照亮特定的目标区域,以改善急性TBI护理和后续支持系统,
TBI后的慢性护理
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Jo Pugh其他文献
Mary Jo Pugh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Jo Pugh', 18)}}的其他基金
VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Phenotypes of Persistent Comorbidity in Post‐9/11 Era Veterans with mTBI
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:后 9/11 时代患有 mTBI 的退伍军人持续合并症的表型
- 批准号:
10001099 - 财政年份:2019
- 资助金额:
-- - 项目类别:
VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Phenotypes of Persistent Comorbidity in Postâ9/11 Era Veterans with mTBI
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:后 9/11 时代患有 mTBI 退伍军人持续合并症的表型
- 批准号:
10269013 - 财政年份:2019
- 资助金额:
-- - 项目类别:
VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Data and Biostatistics Core
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:数据和生物统计学核心
- 批准号:
10269014 - 财政年份:2019
- 资助金额:
-- - 项目类别:
VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Data and Biostatistics Core
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:数据和生物统计学核心
- 批准号:
10534111 - 财政年份:2019
- 资助金额:
-- - 项目类别:
VA-DoD Long-Term Impact of Military-Relevant Brain Injury Consortium (LIMBIC): Data and Biostatistics Core
VA-DoD 军事相关脑损伤联盟 (LIMBIC) 的长期影响:数据和生物统计学核心
- 批准号:
10000608 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Secondary Analysis of Existing Databases in Traumatic Brain Injury to Explore Outcomes Relevant to Medical Rehabilitation
对现有的创伤性脑损伤数据库进行二次分析,探索与医疗康复相关的结果
- 批准号:
9173126 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Validating Cases of Dementia and Mild Cognitive Impairment in OEF/OIF Veterans
验证 OEF/OIF 退伍军人的痴呆症和轻度认知障碍病例
- 批准号:
9033326 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Validating Cases of Dementia and Mild Cognitive Impairment in OEF/OIF Veterans
验证 OEF/OIF 退伍军人的痴呆症和轻度认知障碍病例
- 批准号:
9198736 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Secondary Analysis of Existing Databases in Traumatic Brain Injury to Explore Outcomes Relevant to Medical Rehabilitation
对现有的创伤性脑损伤数据库进行二次分析,探索与医疗康复相关的结果
- 批准号:
9650254 - 财政年份:2016
- 资助金额:
-- - 项目类别:
VA Vascular Injury Study (VAVIS): VA-DoD extremity injury outcomes collaboration
VA 血管损伤研究 (VAVIS):VA-DoD 肢体损伤结果合作
- 批准号:
9145503 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
-- - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant