Neural Codes Underlying Visual Segmentation

视觉分割背后的神经代码

基本信息

  • 批准号:
    10662383
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-01-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract In natural vision, it is rare to encounter an isolated object presented on a blank background. Instead, natural scenes are often complex and contain multiple entities. Image segmentation refers to the process of partitioning visual scenes into distinct objects and surfaces, which includes segmenting a figure from the background (figure- ground segregation) and segmenting multiple objects/surfaces from each other. Segmentation is a fundamental function of vision and is a gateway to perception, recognition and visually guided action. However, the neural underpinning of segmentation remains to be understood. A key question is to understand how the brain represents multiple visual stimuli such that information regarding individual stimuli can be extracted from the activity of populations of neurons. We address this question in the proposed project to elucidate the neural mechanisms underlying segmentation and the principles of coding sensory information in neuronal populations. Visual motion and depth provide potent cues for segmentation. Therefore we focus on understanding how the brain uses motion and depth cues to achieve segmentation. We have made substantial progress in defining how middle-temporal (MT) cortex, an area important for motion and depth processing, represents multiple overlapping visual stimuli. We found that MT neurons show various types of response biases toward one component of multiple stimuli, revealing a set of novel rules by which multiple stimuli interact within neurons’ receptive fields. These physiological findings together with our preliminary data on natural scene statistics led us to hypothesize that the visual system exploits the statistical regularities in natural scenes that differentiate figure from the background and represents multiple visual stimuli efficiently to achieve segmentation. To test this overarching hypothesis, we will integrate the approaches of natural scene statistics, neurophysiology, and theoretical consideration of optimal coding. Specifically, we will characterize natural scene statistics of depth and motion pertinent to image segmentation, elucidate the functional roles of stereoscopic depth in figure-ground segregation, define the rules by which neurons in area MT represent multiple spatially-separated stimuli, which are commonly encountered in natural vision, and determine the signal transformation across multiple brain areas in the dorsal visual pathway to achieve segmentation. Finally, we will use an Information-Maximization approach to determine whether the neural representation of multiple visual stimuli is optimal for segmentation. The proposed study rigorously explores the interaction of multiple stimuli and is expected to provide important insight into how the visual system solves the challenging problem of segmentation in natural vision.
项目摘要/摘要 在自然视觉中,很少会遇到孤立的物体出现在空白背景上。相反,自然的 场景通常很复杂,并且包含多个实体。图像分割是指分割的过程 视觉场景分为不同的对象和表面,这包括将图形从背景中分割出来(图形- 地面分离)以及将多个对象/表面彼此分割。细分是最基本的 视觉是视觉的功能,是感知、识别和视觉引导行动的门户。然而,神经 分割的基础仍有待理解。一个关键的问题是理解大脑是如何 表示多个视觉刺激,以便可以从 神经元群体的活动。我们在拟议的项目中解决了这个问题,以阐明神经 神经元群体中潜在的分割机制和编码感觉信息的原则。 视觉运动和深度为分割提供了有力的线索。因此,我们的重点是了解 大脑使用运动和深度线索来实现分割。我们在界定如何 中-颞叶(MT)皮质是运动和深度处理的重要区域,代表多个重叠 视觉刺激。我们发现,MT神经元对其中一种成分表现出不同类型的反应偏向 多个刺激,揭示了一套新的规则,通过这些规则,多个刺激在神经元的感受野内相互作用。 这些生理发现与我们关于自然场景统计的初步数据一起导致了我们的假设 视觉系统利用自然场景中的统计规律来区分图形和 并有效地表示多个视觉刺激以实现分割。为了测试这一支配性 假设,我们将整合自然场景统计、神经生理学和理论的方法 对最佳编码的考虑。具体地说,我们将描述深度和运动的自然场景统计数据 与图像分割相关,阐明了立体深度在图形-背景中的作用 分离,定义了MT区神经元代表多个空间分离刺激的规则,这 在自然视觉中常见,并决定了大脑多个区域的信号转换 在背侧视觉通路中实现分割。最后,我们将使用信息最大化方法 以确定多个视觉刺激的神经表示是否对分割是最佳的。这个 拟议的研究严谨地探索多个刺激的相互作用,并有望提供重要的见解 研究视觉系统如何解决自然视觉中具有挑战性的分割问题。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transformations of sensory information in the brain reflect a changing definition of optimality.
大脑中感觉信息的转变反映了最优性定义的变化。
  • DOI:
    10.1101/2023.03.24.534044
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Manning,TylerS;Alexander,Emma;Cumming,BruceG;DeAngelis,GregoryC;Huang,Xin;Cooper,EmilyA
  • 通讯作者:
    Cooper,EmilyA
Transformations of sensory information in the brain suggest changing criteria for optimality.
  • DOI:
    10.1371/journal.pcbi.1011783
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
Normalization of neuronal responses in cortical area MT across signal strengths and motion directions.
皮质区 MT 中神经元反应在信号强度和运动方向上的标准化。
  • DOI:
    10.1152/jn.00700.2013
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xiao,Jianbo;Niu,Yu-Qiong;Wiesner,Steven;Huang,Xin
  • 通讯作者:
    Huang,Xin
Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.
来自重叠随机背景噪声的运动能量的积分增加了连贯移动刺激的感知速度。
  • DOI:
    10.1152/jn.01068.2015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Chuang,Jason;Ausloos,EmilyC;Schwebach,CourtneyA;Huang,Xin
  • 通讯作者:
    Huang,Xin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin Huang其他文献

Xin Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin Huang', 18)}}的其他基金

SINE-mediated Regulation of mRNA Epitranscriptome for Pluripotency Maintenance and Differentiation
SINE介导的mRNA表观转录组多能性维持和分化调节
  • 批准号:
    10659218
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
SINE-mediated Regulation of mRNA Epitranscriptome for Pluripotency Maintenance and Differentiation
SINE介导的mRNA表观转录组多能性维持和分化调节
  • 批准号:
    10417866
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
Regulation of blood coagulation by the ZPI/PZ anticoagulant system
ZPI/PZ 抗凝系统对凝血的调节
  • 批准号:
    10266229
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
Neural Codes Underlying Visual Segmentation
视觉分割背后的神经代码
  • 批准号:
    10437026
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
Neural Codes Underlying Visual Segmentation
视觉分割背后的神经代码
  • 批准号:
    9974166
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
Neural Codes Underlying Visual Segmentation
视觉分割背后的神经代码
  • 批准号:
    10261445
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
Neural Codes Underlying Visual Segmentation
视觉分割背后的神经代码
  • 批准号:
    8632581
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
Neural Codes Underlying Visual Segmentation
视觉分割背后的神经代码
  • 批准号:
    9198010
  • 财政年份:
    2014
  • 资助金额:
    $ 45万
  • 项目类别:
NEURAL MECHANISMS OF VISUAL PERCEPTION AND VISUALLY GUIDED ACTION
视觉感知和视觉引导行动的神经机制
  • 批准号:
    8173167
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:

相似国自然基金

层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
  • 批准号:
    2021JJ40433
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
  • 批准号:
    32001603
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
AREA国际经济模型的移植.改进和应用
  • 批准号:
    18870435
  • 批准年份:
    1988
  • 资助金额:
    2.0 万元
  • 项目类别:
    面上项目

相似海外基金

REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE UNIVERSITY OF WASHINGTON
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与华盛顿大学的测序核心合同 RFP 75N95022R00031
  • 批准号:
    10931180
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Development of an LED Device for Observing and Manipulating Neural Activity to Elucidate the Wide-Area Brain System
开发用于观察和操纵神经活动的 LED 设备,以阐明广域大脑系统
  • 批准号:
    23H01465
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
REQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS WITH THE BROAD INSTITUTE
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑计划细胞阿特拉斯网络 (BICAN) 与布罗德研究所签订测序核心合同
  • 批准号:
    10931182
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
REREQUEST TO ISSUE TASK ORDER 1 - TASK AREA 1: MANUAL OF OPERATIONS - FOR THE BRAIN INITIATIVE CELL ATLAS NETWORK (BICAN) SEQUENCING CORE CONTRACTS RFP 75N95022R00031 WITH THE NY GENOME CENTER
请求发布任务令 1 - 任务领域 1:操作手册 - 大脑倡议细胞阿特拉斯网络 (BICAN) 与纽约基因组中心的测序核心合同 RFP 75N95022R00031
  • 批准号:
    10931190
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
Dissecting an asymmetric brain area implicated in sleep maintenance
剖析与睡眠维持有关的不对称大脑区域
  • 批准号:
    BB/X01536X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Elucidation of relationship between three-dimensional transition of neglected space and area of brain damage in hemi-spatial neglect after stroke
脑卒中后半侧空间忽视被忽视空间三维转变与脑损伤面积关系的阐明
  • 批准号:
    22K21219
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
CAREER: Untangling Inter-Area Communication in the Brain Using Multi-Region Neural Networks
职业:使用多区域神经网络理清大脑中的区域间通信
  • 批准号:
    2046583
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
  • 批准号:
    10294007
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
A robotic fiber platform for large area deep brain interfacing
用于大面积深部脑接口的机器人纤维平台
  • 批准号:
    10463747
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
Decoding / encoding somatosensation from the hand area of the human primary somatosensory (S1) cortex for a closed-loop motor / sensory brain-machine interface (BMI)
解码/编码人类初级体感 (S1) 皮层手部区域的体感,用于闭环运动/感觉脑机接口 (BMI)
  • 批准号:
    10656218
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了