Flexible, ultrahigh-throughput and easy-implementing distributed coincidence processor for improving PET imaging performance
灵活、超高通量且易于实施的分布式符合处理器,用于提高 PET 成像性能
基本信息
- 批准号:10540325
- 负责人:
- 金额:$ 8.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmsCodeCommunitiesComplexComputer GraphicsComputer softwareComputersDataData Storage and RetrievalDecision MakingDedicationsDevelopmentDevicesDocumentationElectronicsEvaluationEventGoalsGuidelinesHuman bodyImageIndividualInfrastructureJournalsModernizationModificationMotionOutputPeer ReviewPerformancePhysiologic pulsePositron-Emission TomographyProcessPublicationsPublishingRadiation therapyResearchResourcesRestRouteRunningSamplingSignal TransductionSource CodeSystemSystems DevelopmentTechnologyTestingTimeWorkbiomedical imagingcomputerized data processingdata acquisitiondesigndetectorflexibilityimage guided therapyimaging capabilitiesimprovedinnovationinstrumentationintegrated circuititerative designnew technologynovelopen sourceprogramsreal-time imagessignal processingsuccesssymposiumtechnology platformtooltumorweb site
项目摘要
This project aims to develop a new and innovative coincidence processor to overcome the limit and drawback of
centralized coincidence processor (CCP) that has been used by many commercial and research Positron
Emission Tomography (PET) scanners since the initial development of PET. Whereas CCP handles the entire
task of PET coincidence event selection with a single complex central processor, similarly to a computer central
processing unit (CPU), that it has the limited count-rate of processing coincidence data because of a single
processor and it is too complex to implement online on a field-programmable-gate-array (FPGA) for many
research groups without extensive expertise and resources, we propose to use a network of distributed
coincidence processors (DCP) that work independently and in parallel to process coincidence data for each
detector pair with its dedicated coincidence processor, similar to a graphics processing unit (GPU). By breaking
a single complex system-level coincidence process into many simple detector-pair-level processes, DCP can
significantly reduce the processing delay at each CP level and therefore increase the overall data throughput,
even with a large number of detector pairs. The algorithm for coincidence event selection with a single detector
pair is simple and can be easily implemented, tested with one detector pair and be straightforwardly replicated
(or populated) to the rest. The goal of this proposed project is to design, implement, evaluate, enhance, and
disseminate the proposed DCP technology. We will pursue three specific aims to achieve this project goal: (1)
To design DCP technology, including the hardware infrastructure of DCP components and functions and
firmware program to realize the design DCP components and functions on FPGA. (2) To implement DCP on a
single FPGA board with 400 coincidence processors as a practical solution to a PET with small to medium
number detector pairs, and on two FPGA boards with 50 coincidence processors on each board as an example
of an expandable solution to a PET with a large number detector pairs; to evaluate DCP with pulsed signals and
PET detectors, and enhance the DCP capability and performance with an iterative design and development
process. 3) To document and disseminate DCP technology through publications and a website with
downloadable technical documentations and firmware/software code. If successfully developed, DCP will
provide a novel and different technology platform for coincidence processing to solve the problems with CCP.
As a game changer, DCP can yield a very high count-rate PET online coincidence data acquisition far beyond
the limit of what CCP can provide and can be implemented on FPGA with much less technical challenging than
implementing CCP. By addressing the problems with CCP and providing the solutions to the research community,
this project would have a transformative impact on improving the capability and performance of PET imaging
and accelerating the development of new PET systems and technologies.
该项目旨在开发一个新的创新巧合处理器,以克服限制和缺点
许多商业和研究正电子的集中巧合处理器(CCP)
宠物最初发育以来,排放断层扫描(PET)扫描仪。而CCP可以处理整个
与单个复杂的中央处理器选择宠物巧合事件的任务,类似于计算机中央
处理单元(CPU),由于一个单一
处理器太复杂了,无法在现场可编程的门柜(FPGA)上在线实施。
研究小组没有广泛的专业知识和资源,我们建议使用分布式网络
巧合处理器(DCP)独立且与每个处理过程的过程巧合数据合并
探测器对与其专用重合处理器,类似于图形处理单元(GPU)。通过破裂
单个复杂的系统级巧合过程中的许多简单的检测器对级过程,DCP可以
显着减少每个CP级别的处理延迟,因此增加了总体数据吞吐量,
即使有大量的检测器对。与单个检测器的重合事件选择的算法
配对很简单,可以轻松实现,用一个检测器对测试并直接复制
(或填充)到其余部分。该拟议项目的目标是设计,实施,评估,增强和
传播拟议的DCP技术。我们将追求三个具体目标以实现这一项目目标:(1)
设计DCP技术,包括DCP组件和功能的硬件基础架构以及
固件程序以实现FPGA上的设计DCP组件和功能。 (2)在
单个FPGA板,带有400个巧合处理器,作为对中小型宠物的实用解决方案
数字检测器对,在两个FPGA板上,每个板上都有50个巧合处理器为例
具有大数检测器对的PET的可扩展解决方案;用脉冲信号和
宠物探测器,并通过迭代设计和开发增强DCP功能和性能
过程。 3)通过出版物和网站记录并传播DCP技术
可下载的技术文档和固件/软件代码。如果成功开发,DCP将
提供一个新颖的技术平台,用于解决CCP问题的巧合处理。
作为改变游戏规则的人,DCP可以产生非常高的计数宠物在线巧合数据获取远远超出
CCP可以在FPGA上实施的限制,技术挑战性要小得多
实施CCP。通过解决CCP的问题并向研究界提供解决方案,
该项目将对提高宠物成像的能力和性能产生变革性的影响
并加速新的宠物系统和技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YIPING SHAO其他文献
YIPING SHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YIPING SHAO', 18)}}的其他基金
Flexible, ultrahigh-throughput and easy-implementing distributed coincidence processor for improving PET imaging performance
灵活、超高通量且易于实施的分布式符合处理器,用于提高 PET 成像性能
- 批准号:
10352094 - 财政年份:2022
- 资助金额:
$ 8.2万 - 项目类别:
Advanced micro-PET/CT/RT System for Translational Radiation Oncology Applications
用于转化放射肿瘤学应用的先进微型 PET/CT/RT 系统
- 批准号:
9249366 - 财政年份:2016
- 资助金额:
$ 8.2万 - 项目类别:
Road to PET Image-Based On-line Proton Beam Range Measurement
基于 PET 图像的在线质子束射程测量之路
- 批准号:
8755657 - 财政年份:2014
- 资助金额:
$ 8.2万 - 项目类别:
Road of PET Image-Based On-line Proton Beam Range Measurement
基于PET图像的在线质子束射程测量之路
- 批准号:
9217028 - 财政年份:2014
- 资助金额:
$ 8.2万 - 项目类别:
SSPM Based PET Detector Modules for Breast Imaging
用于乳腺成像的基于 SSPM 的 PET 探测器模块
- 批准号:
7470384 - 财政年份:2008
- 资助金额:
$ 8.2万 - 项目类别:
SSPM Based PET Detector Modules for Breast Imaging
用于乳腺成像的基于 SSPM 的 PET 探测器模块
- 批准号:
7686853 - 财政年份:2008
- 资助金额:
$ 8.2万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686546 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
Extensible Open Source Zero-Footprint Web Viewer for Cancer Imaging Research
用于癌症成像研究的可扩展开源零足迹 Web 查看器
- 批准号:
10644112 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 8.2万 - 项目类别: