Flexible, ultrahigh-throughput and easy-implementing distributed coincidence processor for improving PET imaging performance
灵活、超高通量且易于实施的分布式符合处理器,用于提高 PET 成像性能
基本信息
- 批准号:10540325
- 负责人:
- 金额:$ 8.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmsCodeCommunitiesComplexComputer GraphicsComputer softwareComputersDataData Storage and RetrievalDecision MakingDedicationsDevelopmentDevicesDocumentationElectronicsEvaluationEventGoalsGuidelinesHuman bodyImageIndividualInfrastructureJournalsModernizationModificationMotionOutputPeer ReviewPerformancePhysiologic pulsePositron-Emission TomographyProcessPublicationsPublishingRadiation therapyResearchResourcesRestRouteRunningSamplingSignal TransductionSource CodeSystemSystems DevelopmentTechnologyTestingTimeWorkbiomedical imagingcomputerized data processingdata acquisitiondesigndetectorflexibilityimage guided therapyimaging capabilitiesimprovedinnovationinstrumentationintegrated circuititerative designnew technologynovelopen sourceprogramsreal-time imagessignal processingsuccesssymposiumtechnology platformtooltumorweb site
项目摘要
This project aims to develop a new and innovative coincidence processor to overcome the limit and drawback of
centralized coincidence processor (CCP) that has been used by many commercial and research Positron
Emission Tomography (PET) scanners since the initial development of PET. Whereas CCP handles the entire
task of PET coincidence event selection with a single complex central processor, similarly to a computer central
processing unit (CPU), that it has the limited count-rate of processing coincidence data because of a single
processor and it is too complex to implement online on a field-programmable-gate-array (FPGA) for many
research groups without extensive expertise and resources, we propose to use a network of distributed
coincidence processors (DCP) that work independently and in parallel to process coincidence data for each
detector pair with its dedicated coincidence processor, similar to a graphics processing unit (GPU). By breaking
a single complex system-level coincidence process into many simple detector-pair-level processes, DCP can
significantly reduce the processing delay at each CP level and therefore increase the overall data throughput,
even with a large number of detector pairs. The algorithm for coincidence event selection with a single detector
pair is simple and can be easily implemented, tested with one detector pair and be straightforwardly replicated
(or populated) to the rest. The goal of this proposed project is to design, implement, evaluate, enhance, and
disseminate the proposed DCP technology. We will pursue three specific aims to achieve this project goal: (1)
To design DCP technology, including the hardware infrastructure of DCP components and functions and
firmware program to realize the design DCP components and functions on FPGA. (2) To implement DCP on a
single FPGA board with 400 coincidence processors as a practical solution to a PET with small to medium
number detector pairs, and on two FPGA boards with 50 coincidence processors on each board as an example
of an expandable solution to a PET with a large number detector pairs; to evaluate DCP with pulsed signals and
PET detectors, and enhance the DCP capability and performance with an iterative design and development
process. 3) To document and disseminate DCP technology through publications and a website with
downloadable technical documentations and firmware/software code. If successfully developed, DCP will
provide a novel and different technology platform for coincidence processing to solve the problems with CCP.
As a game changer, DCP can yield a very high count-rate PET online coincidence data acquisition far beyond
the limit of what CCP can provide and can be implemented on FPGA with much less technical challenging than
implementing CCP. By addressing the problems with CCP and providing the solutions to the research community,
this project would have a transformative impact on improving the capability and performance of PET imaging
and accelerating the development of new PET systems and technologies.
本项目旨在开发一种新的和创新的符合处理器,以克服
集中式符合处理器(CCP),已被许多商业和研究用正电子
发射断层扫描(PET)扫描仪自PET的最初发展。而CCP处理整个
与计算机中央处理器类似,使用单个复杂中央处理器进行PET符合事件选择的任务
处理单元(CPU),其具有有限的处理符合数据的计数率,因为单个
它是太复杂了,在线实现现场可编程门阵列(FPGA)的许多
研究小组没有广泛的专业知识和资源,我们建议使用分布式网络,
符合处理器(DCP),其独立且并行地工作以处理每个符合处理器的符合数据,
探测器与其专用的符合处理器配对,类似于图形处理单元(GPU)。通过打破
将单个复杂的系统级符合过程转化为许多简单的探测器对级过程,DCP可以
显著减少每个CP级别的处理延迟,从而增加整体数据吞吐量,
即使具有大量的检测器对。单探测器符合事件选择算法
一对探测器结构简单,易于实现,用一对探测器进行测试,并可直接复制
(or其余的人)。本项目的目标是设计、实施、评估、增强和
推广DCP技术。我们将努力实现三个具体目标,以实现这一项目的目标:(1)
设计DCP技术,包括DCP组件和功能的硬件架构,
固件程序,在FPGA上实现设计的DCP组件和功能。(2)要在
具有400个符合处理器的单个FPGA板,作为中小型PET的实用解决方案
数量探测器对,并在两个FPGA板上,每个板上有50个符合处理器作为示例
一种可扩展的解决方案,用于具有大量探测器对的PET;用于使用脉冲信号评估DCP,
PET探测器,并通过迭代设计和开发增强DCP能力和性能
过程3)通过出版物和网站记录和传播DCP技术,
下载技术文档和固件/软件代码。如果开发成功,DCP将
为符合处理提供了一个新的、不同的技术平台,以解决CCP的问题。
作为一个游戏规则的改变者,DCP可以产生一个非常高的计数率PET在线符合数据采集远远超过
CCP可以提供的限制,可以在FPGA上实现,技术挑战比
实施CCP。通过解决CCP的问题并为研究界提供解决方案,
该项目将对提高PET成像的能力和性能产生变革性的影响
加快PET新系统和新技术的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YIPING SHAO其他文献
YIPING SHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YIPING SHAO', 18)}}的其他基金
Flexible, ultrahigh-throughput and easy-implementing distributed coincidence processor for improving PET imaging performance
灵活、超高通量且易于实施的分布式符合处理器,用于提高 PET 成像性能
- 批准号:
10352094 - 财政年份:2022
- 资助金额:
$ 8.2万 - 项目类别:
Advanced micro-PET/CT/RT System for Translational Radiation Oncology Applications
用于转化放射肿瘤学应用的先进微型 PET/CT/RT 系统
- 批准号:
9249366 - 财政年份:2016
- 资助金额:
$ 8.2万 - 项目类别:
Road to PET Image-Based On-line Proton Beam Range Measurement
基于 PET 图像的在线质子束射程测量之路
- 批准号:
8755657 - 财政年份:2014
- 资助金额:
$ 8.2万 - 项目类别:
Road of PET Image-Based On-line Proton Beam Range Measurement
基于PET图像的在线质子束射程测量之路
- 批准号:
9217028 - 财政年份:2014
- 资助金额:
$ 8.2万 - 项目类别:
SSPM Based PET Detector Modules for Breast Imaging
用于乳腺成像的基于 SSPM 的 PET 探测器模块
- 批准号:
7470384 - 财政年份:2008
- 资助金额:
$ 8.2万 - 项目类别:
SSPM Based PET Detector Modules for Breast Imaging
用于乳腺成像的基于 SSPM 的 PET 探测器模块
- 批准号:
7686853 - 财政年份:2008
- 资助金额:
$ 8.2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Research Grant