Integrating single-cell based transcriptomic signatures for identifying therapeutic targets of COPD
整合基于单细胞的转录组特征来识别 COPD 的治疗靶点
基本信息
- 批准号:10540331
- 负责人:
- 金额:$ 12.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AGTR2 geneBiologicalCellsChronic Obstructive Pulmonary DiseaseClinicalComplexDataDatabasesDiseaseDrug TargetingEndothelial CellsGene ExpressionGene Expression ProfilingGenesGenetic TranscriptionGenomicsGenotypeGoalsHeritabilityIndividualKnowledgeLungLung TransplantationLung diseasesMachine LearningMacrophageMapsMediatingMethodsMolecularNetwork-basedNoisePathogenesisPathologicPathway AnalysisPathway interactionsPatientsPharmaceutical PreparationsPharmacotherapyPhenotypePopulationProxyPublic HealthResearchResolutionResourcesRoleSmokerSmokingStructureStructure of parenchyma of lungTechnologyTherapeutic EffectThromboplastinTissuesVisualizationbiomarker discoverycell typecigarette smokingcohortdifferential expressiondisorder subtypedrug discoverygene regulatory networkhuman diseaseimprovednever smokernew therapeutic targetnovelnovel markernovel therapeutic interventionsingle-cell RNA sequencingsmoking cessationtherapeutic targettranscription factortranscriptome sequencingtranscriptomicstreatment strategy
项目摘要
The main goal of this proposal is to apply novel machine learning and network-based methods to facilitate the
discovery of biomarkers in diseases and therapeutic targets of drugs. While single-cell RNA sequencing
(scRNAseq) technology has enabled gene expression profiling at single cell resolution, and has helped detect
perturbation in thousands of genes across many different cell types and potential novel disease mechanisms,
identifying viable therapeutic targets out of thousands of candidates is still a challenging problem. Therefore, it
is essential to identify a high-priority and streamlined set of potential drug targets whose role in the disease
could be experimentally validated in the lab with finite resources. This proposal is motivated by a recent
discovery by our group: We identified both cell-type-specific and disease associated changes by analyzing
single-cell transcriptomics profiles of COPD and healthy lung tissues. One limitation is that these results come
from a subset of most severe COPD patients and may not be generalized to all COPD subtypes. The scRNA
study also has limitation for predicting gene regulatory network (GRN), due to inflated noise level and sparsity
of the data. Therefore, we propose to leverage information from bulk transcriptomic data from large cohorts,
such as the Genotype-Tissue Expression (GTEx) and The Lung Genomics Research Consortium (LGRC). We
believe that using GRN from bulk-level, large cohort, RNAseq data as the baseline GRN for COPD lungs will
lead to more robust identification of disease-associated cell types and pathways, and the results will be more
generalizable to all COPD subtypes. In Aim 1 we will identify a list of transcription factors (TFs) that that are
most active in COPD and most likely to regulate the cell-type-specific transcriptomic signatures identified in our
scRNA study. This will be achieved by applying novel machine learning and network methods to integrate the
GRN from GTEx and LGRC cohorts and scRNA data. In Aim 2 we will apply this method to study the effects of
cigarette smoking (CS). This aim is motivated by our scRNA-seq study which identified distinct gene
expression perturbations in two AT2 subpopulations. As our COPD subjects were advanced patients who had
stopped smoking in anticipation of their lung transplant, these results may reflect persistent pathologic changes
that continue after smoking cessation. Therefore, we will apply the same approach as in Aim 1 to identify cell-
type specific transcriptomic signatures of cigarette smoking in COPD human lung tissues and TFs that are
likely to mediate these signatures. In Aim 3 we will identify a list of potential drugs suitable for targeting the TF
modules based on the results from Aims 1 and 2. We will map the TF modules based on Aims 1 and 2 to
DrugBank, a Drug Target Discovery database, and we will identify the drugs that are most likely to effectively
target these modules based on network proximity to TFs within the module. We believe these drugs and drug
targets may give us the best chance to validate novel TF/drug targets that may lead to new treatment strategy
for COPD patients.
本提案的主要目标是应用新颖的机器学习和基于网络的方法来促进
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAFTALI KAMINSKI其他文献
NAFTALI KAMINSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAFTALI KAMINSKI', 18)}}的其他基金
Integrating single-cell based transcriptomic signatures for identifying therapeutic targets of COPD
整合基于单细胞的转录组特征来识别 COPD 的治疗靶点
- 批准号:
10360807 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Epithelial Protective Effects of Thyroid Hormone Signaling in Fibrosis
甲状腺激素信号传导对纤维化的上皮保护作用
- 批准号:
10307633 - 财政年份:2018
- 资助金额:
$ 12.56万 - 项目类别:
Epithelial Protective Effects of Thyroid Hormone Signaling in Fibrosis
甲状腺激素信号传导对纤维化的上皮保护作用
- 批准号:
10063549 - 财政年份:2018
- 资助金额:
$ 12.56万 - 项目类别:
Mir-29 mimicry as a therapy for pulmonary fibrosis
Mir-29拟态作为肺纤维化的治疗方法
- 批准号:
8931051 - 财政年份:2014
- 资助金额:
$ 12.56万 - 项目类别:
Mir-29 mimicry as a therapy for pulmonary fibrosis
Mir-29拟态作为肺纤维化的治疗方法
- 批准号:
9144911 - 财政年份:2014
- 资助金额:
$ 12.56万 - 项目类别:
Mir-29 mimicry as a therapy for pulmonary fibrosis
Mir-29拟态作为肺纤维化的治疗方法
- 批准号:
8758509 - 财政年份:2014
- 资助金额:
$ 12.56万 - 项目类别:
相似海外基金
Conference: Society for Research on Biological Rhythms (SRBR): Timing from Cells to Clinics: San Juan, Puerto Rico May 18th - May 23rd, 2024
会议:生物节律研究协会 (SRBR):从细胞到诊所的计时:波多黎各圣胡安 2024 年 5 月 18 日至 5 月 23 日
- 批准号:
2416046 - 财政年份:2024
- 资助金额:
$ 12.56万 - 项目类别:
Standard Grant
Engineering biological signaling pathways using synthetic cells (SIGSYNCELL)
使用合成细胞工程生物信号通路 (SIGSYNCELL)
- 批准号:
EP/Y031326/1 - 财政年份:2024
- 资助金额:
$ 12.56万 - 项目类别:
Research Grant
Exceptional Points Enhanced Acoustic Sensing of Biological Cells
特殊点增强生物细胞的声学传感
- 批准号:
2328407 - 财政年份:2024
- 资助金额:
$ 12.56万 - 项目类别:
Standard Grant
SIGSYNCELL: Engineering biological signaling pathways using synthetic cells
SIGSYNCELL:使用合成细胞工程生物信号通路
- 批准号:
EP/Y032675/1 - 财政年份:2024
- 资助金额:
$ 12.56万 - 项目类别:
Research Grant
Mechanism and biological significance of cell death of test cells for follicular maturation test cells
卵泡成熟试验细胞的细胞死亡机制及生物学意义
- 批准号:
23K05837 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EPSRC New Horizons 2021: Engineering synthetic synapses between artificial and biological cells.
EPSRC New Horizons 2021:人工细胞和生物细胞之间的工程合成突触。
- 批准号:
EP/X018903/1 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Research Grant
The potential role and mechanism of mitophagy in maintaining the biological characteristics of cancer stem cells
线粒体自噬在维持肿瘤干细胞生物学特性中的潜在作用和机制
- 批准号:
23K14598 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algebraic Modelling of Molecular Interactions in Biological Cells
生物细胞中分子相互作用的代数模型
- 批准号:
2890922 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Studentship
Biological function of osteoporotic drugs on bone-specific blood vessels and perivascular cells
骨质疏松药物对骨特异性血管和血管周围细胞的生物学功能
- 批准号:
22K21006 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Do plastics have deteriorated in the environment become an aerosol and reach the alveoli and biological cells?
塑料在环境中变质后是否会变成气溶胶并到达肺泡和生物细胞?
- 批准号:
22K18829 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)