Chromatin Organization Regulates Osteogenesis
染色质组织调节成骨
基本信息
- 批准号:10540818
- 负责人:
- 金额:$ 50.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-06 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcuteAffectAgingAlkaline PhosphataseBindingBiological AssayBone DevelopmentBone Formation StimulationBone RegenerationBone SurfaceBone TissueCCCTC-binding factorCRISPR/Cas technologyCell LineageCell SeparationCellsChromatinChromatin StructureChromosome MappingChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCompetenceComplementComplexControl GroupsData SetDevelopmentDimensionsEnhancersEpigenetic ProcessFemaleFutureGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGenomeGenomic SegmentGenomicsHi-CHigher Order Chromatin StructureHistologyImpairmentImplantInjectionsInterventionKnowledgeLinkMapsMature BoneMediatingMesenchymal Stem CellsMicroRNAsModelingModificationMusOsteoblastsOsteogenesisOutcomePhenotypePrevention strategyPublishingRegulatory ElementResearchResolutionRoleSelection CriteriaSpecific qualifier valueSupporting CellTestingTherapeuticTimeTissuesTranscriptional RegulationTransplantationUndifferentiatedbonebone losschromosomal locationclinically relevantcohortdifferential expressionfunctional genomicsgene networkhistone modificationin vivoin vivo evaluationmalemouse modelnovelosteoblast differentiationosteogenicprogramsprotein complexskeletal disorderstem cellssubcutaneoustranscription factortranscriptome sequencingtranslational applicationstreatment strategy
项目摘要
SUMMARY
This new R01 builds on discoveries during the R37 period (2008-2018) that established epigenetic mechanisms
(miRNAs, histone modifications) regulating osteoblast differentiation. We characterized for the first time a
“signature” of specific histone modifications that are associated with dynamic changes in gene expression during
the temporal progression of osteogenesis. These histone modifications also predicted “enhancers”, which are
critical cis-regulatory elements that contribute to local gene expression. We now propose to examine the recently
recognized “super enhancer” domains (SEDs) that include regulatory elements for multiple transcription factors
that have emerged as key regulators of cell phenotypes. SEDs function in chromatin organization via long range
intra- and inter-chromosomal interactions that coordinate control of gene cohorts responsible for lineage
specification and distinct cell identity. Our preliminary studies have identified a subset of SEDs that we now
propose are putative “bone-essential super-enhancers” and candidates for the important decision stage of
commitment to osteogenesis from MSCs. We hypothesize that super-enhancer domains are differentially
activated from the undifferentiated MSC to the osteoblast commitment stage, and function to establish the
osteogenic phenotype by coordinately regulating gene networks and contributing to higher order chromatin
organization that supports cell identity. Our studies will in: Aim1- analyze the functional effects of prioritized SEDs
we have identified related to osteoblastogenesis and mature bone activities through directed inhibition and
activation of SEDs using CRISPR/Cas9 in MSCs; Aim 2- determine the chromosomal domains that interact
with SEDs to control multiple genes and networks that commit MSCs to the osteoblast phenotype through
chromatin organization; and Aim 3- demonstrate in mouse models that using CRISPR activated SEDs in MSCs
will stimulate bone formation.
Impact: These studies pioneer a new level of gene regulation for MSC lineage commitment to osteogenesis,
based on an emerging understanding of SED functions in other tissues but have been minimally studied in bone.
By characterizing SED mechanisms related to chromatin organization and stabilization in MSCs, we will discover
novel mechanisms of multi-dimensional coordinate control of transcriptional hubs and protein complexes within
an SED that is responsible for establishing commitment to the osteoblast phenotype. Importantly, knowledge of
the chromatin organization that stabilizes the osteogenic phenotype impacts on future novel treatment strategies
for skeletal disorders.
概括
这个新的 R01 建立在 R37 时期(2008-2018)的发现之上,这些发现建立了表观遗传机制
(miRNA、组蛋白修饰)调节成骨细胞分化。我们首次表征了
特定组蛋白修饰的“签名”,与基因表达的动态变化相关
成骨的时间进展。这些组蛋白修饰也预测了“增强子”,即
有助于局部基因表达的关键顺式调控元件。我们现在建议审查最近
公认的“超级增强子”结构域 (SED),其中包含多个转录因子的调控元件
已成为细胞表型的关键调节因子。 SED 通过远距离在染色质组织中发挥作用
染色体内和染色体间的相互作用,协调负责谱系的基因群的控制
规格和独特的细胞身份。我们的初步研究已经确定了 SED 的一个子集,我们现在
提出的是假定的“骨必需超级增强剂”和重要决策阶段的候选者
MSC 致力于成骨。我们假设超级增强子域是不同的
从未分化的MSC激活到成骨细胞定型阶段,并发挥建立成骨细胞的功能
通过协调调节基因网络并促进高阶染色质来形成成骨表型
支持细胞身份的组织。我们的研究将: 目标 1 - 分析优先 SED 的功能效果
我们通过定向抑制和鉴定与成骨细胞生成和成熟骨活性相关
在 MSC 中使用 CRISPR/Cas9 激活 SED;目标 2-确定相互作用的染色体结构域
使用 SED 来控制多个基因和网络,通过这些基因和网络将 MSC 转变成成骨细胞表型
染色质组织;目标 3 - 在小鼠模型中证明使用 CRISPR 激活 MSC 中的 SED
会刺激骨骼形成。
影响:这些研究开创了 MSC 谱系对成骨作用的基因调控新水平,
基于对其他组织中 SED 功能的新认识,但在骨骼中的研究很少。
通过表征 MSC 中与染色质组织和稳定相关的 SED 机制,我们将发现
转录中枢和蛋白质复合物多维坐标控制的新机制
SED 负责建立对成骨细胞表型的承诺。重要的是,知识
稳定成骨表型的染色质组织对未来新型治疗策略的影响
用于骨骼疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane B. Lian其他文献
Networks and hubs for the transcriptional control of osteoblastogenesis
- DOI:
10.1007/s11154-006-9001-5 - 发表时间:
2006-06-01 - 期刊:
- 影响因子:8.000
- 作者:
Jane B. Lian;Gary S. Stein;Amjad Javed;Andre J. van Wijnen;Janet L. Stein;Martin Montecino;Mohammad Q. Hassan;Tripti Gaur;Christopher J. Lengner;Daniel W. Young - 通讯作者:
Daniel W. Young
Gamma-carboxyglutamate excretion and calcinosis in juvenile dermatomyositis.
幼年皮肌炎中的γ-羧基谷氨酸排泄和钙质沉着。
- DOI:
10.1002/art.1780250910 - 发表时间:
1982 - 期刊:
- 影响因子:0
- 作者:
Jane B. Lian;Jane B. Lian;Lauren M. Pachman;C. Gundberg;Raymond E. H. Partridge;M. Maryjowski - 通讯作者:
M. Maryjowski
LB-036 - Cbfβ prevents articular cartilage degeneration
- DOI:
10.1016/j.joca.2024.03.038 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Xiangguo Che;Xian Jin;Dong-Kyo Lee;Hee-June Kim;Hee-Soo Kyung;Hyun-Ju Kim;Jane B. Lian;Janet L. Stein;Gary S. Stein;Je-Yong Choi - 通讯作者:
Je-Yong Choi
Mitotic bookmarking of genes: a novel dimension to epigenetic control
基因的有丝分裂书签:表观遗传控制的一个新维度
- DOI:
10.1038/nrg2827 - 发表时间:
2010-07-13 - 期刊:
- 影响因子:52.000
- 作者:
Sayyed K. Zaidi;Daniel W. Young;Martin A. Montecino;Jane B. Lian;Andre J. van Wijnen;Janet L. Stein;Gary S. Stein - 通讯作者:
Gary S. Stein
Nuclear microenvironments in biological control and cancer
生物防治和癌症中的核微环境
- DOI:
10.1038/nrc2149 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:66.800
- 作者:
Sayyed K. Zaidi;Daniel W. Young;Amjad Javed;Jitesh Pratap;Martin Montecino;Andre van Wijnen;Jane B. Lian;Janet L. Stein;Gary S. Stein - 通讯作者:
Gary S. Stein
Jane B. Lian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane B. Lian', 18)}}的其他基金
Project 3: MANCR Mediates Epigenetic Mechanisms for Survival of Advanced Breast Cancer
项目 3:MANCR 介导晚期乳腺癌生存的表观遗传机制
- 批准号:
10380073 - 财政年份:2021
- 资助金额:
$ 50.64万 - 项目类别:
Project 3: MANCR Mediates Epigenetic Mechanisms for Survival of Advanced Breast Cancer
项目 3:MANCR 介导晚期乳腺癌生存的表观遗传机制
- 批准号:
10608059 - 财政年份:2021
- 资助金额:
$ 50.64万 - 项目类别:
Runx2 Organizes Transcriptional Complexes in Nuclear Microenvironments to Support
Runx2 在核微环境中组织转录复合物以支持
- 批准号:
8601049 - 财政年份:2013
- 资助金额:
$ 50.64万 - 项目类别:
Runx2 Organizes Transcriptional Complexes in Nuclear Microenvironments to Support
Runx2 在核微环境中组织转录复合物以支持
- 批准号:
8052327 - 财政年份:2011
- 资助金额:
$ 50.64万 - 项目类别:
RUNX@ Subnuclear Targeting Integrates Signaling Pathways for Bone Formation
RUNX@ 亚核靶向整合骨形成信号通路
- 批准号:
8289359 - 财政年份:2011
- 资助金额:
$ 50.64万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 50.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 50.64万 - 项目类别:
Operating Grants














{{item.name}}会员




