Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
基本信息
- 批准号:10539252
- 负责人:
- 金额:$ 33.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdipocytesAlzheimer&aposs DiseaseBiochemicalBiogenesisBiological AssayBiological MarkersBiologyBiomassBone MarrowCD3 AntigensCD8B1 geneCancer cell lineCatabolic ProcessCell Cycle ProgressionCell Differentiation processCell ProliferationCell membraneCell physiologyCellsCellular Metabolic ProcessChemicalsComplexDNA biosynthesisDataDiabetes MellitusDiseaseEnvironmentEnzymesEpitheliumEventFRAP1 geneGenetic TranscriptionGlutamineGoalsGrowthGrowth FactorGuanosine TriphosphateHela CellsHomeostasisHuman Cell LineIn VitroIsotopesKnock-outMAP Kinase GeneMEK inhibitionMEKsMalignant NeoplasmsMammalian CellMeasuresMediatingMetabolicMetabolic ControlMetabolic DiseasesMetabolic PathwayMetabolismMitogensMolecularNerve DegenerationNon-Insulin-Dependent Diabetes MellitusNormal CellNucleic AcidsNucleotidesNutrientObesityOncogenicOrganismPIK3CG genePathologicPathologyPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalPlayPositioning AttributePost-Translational Protein ProcessingProcessProductionProliferatingProtein-Serine-Threonine KinasesProteinsProteomicsPurinesPyrimidinePyrimidinesRNA chemical synthesisRas/RafRecurrenceRegulationRibosomesRoleScienceSerineSignal PathwaySignal TransductionSpleenSystemT-LymphocyteTherapeutic InterventionTissuesTracerWestern Blottingbasec-myc Genescell growthcytokinefightinghuman diseaseinhibitorinsightinterestisotope incorporationliquid chromatography mass spectrometrymacromoleculemetabolomicsmutantnovel therapeutic interventionnucleotide metabolismpersonalized therapeuticphosphoproteomicspurine metabolismraf Kinasesreconstitutionresistance mechanismresponsetherapeutic targettranscription factor
项目摘要
PROJECT SUMMARY
Cells and organisms must coordinate their metabolic activity with changes in their nutrient environment. This
coordination is achieved via the signaling networks that integrate local and systemic nutrient inputs and relay
nutrient status to the control of cellular anabolic and catabolic processes. This task can be carried out by the
RAS-RAF-MEK-ERK cascade, a signaling system that is commonly activated by various growth factors and
oncogenic events. In response to a mitogen factor such as the epithelial growth factor (EGF), ERK is activated
and promotes cell proliferation and differentiation by regulating activity of transcription factors involved in cell
cycle progression and proliferation. However, much less is understood about how ERK signaling directly controls
metabolic processes. Targeting the kinases RAF, MEK or ERK is currently a strategy employed to treat several
diseases including cancer, type 2 diabetes, metabolic disorders and neurodegeneration, however mechanisms
of resistance often occur. Therefore, elucidating the downstream targets of ERK and more specifically the
molecular mechanisms by which ERK signaling drives metabolism is of great interest in order to identify new
therapeutic strategies against ERK driven disease. Recently we discovered that the mechanistic target of
rapamycin complex 1 (mTORC1) stimulates synthesis of purines and pyrimidines de novo through different
molecular mechanisms. Nucleotides play a central role in metabolism at a fundamental and cellular level. Purine
and pyrimidine bases can be synthesized de novo or recycled through the salvage pathways. Nucleotides carry
packets of chemical energy (e.g. ATP, GTP) throughout the cell to the many cellular functions that demand
energy, which include: synthesizing nucleic acids, proteins and cell membranes. Under this proposal, we propose
to study the influence of ERK signaling on nucleotide synthesis. We have identified that ERK signaling stimulates
de novo purine synthesis in various settings through posttranslational modification of the enzyme PFAS
(phosphoformylglycinamidine synthase) which belongs to the de novo purine synthesis pathway. We propose to
dissect the molecular mechanisms underlying this regulation (Specific Aim1). We will determine the role of the
ERK-PFAS axis in the control of cell growth (Specific Aim 2). Furthermore, we will determine the implication of
this regulation in ERK-mediated biology and disease (Specific Aim3). Thus, the overall goal of this proposal is to
decipher the molecular mechanisms by which ERK controls de novo nucleotide synthesis in normal and
pathological settings. We anticipate that the proposed studies will yield new insights into how nucleotide
synthesis is regulated by ERK and will uncover therapeutic targets to perturb ERK-mediated disease.
项目摘要
细胞和生物体必须协调其代谢活动与其营养环境的变化。 这
协调是通过信号网络实现的,该网络整合了局部和系统的营养输入和中继
营养状态来控制细胞的合成代谢和分解代谢过程。 这项任务可以由
RAS-RAF-MEK-ERK 级联,一种信号系统,通常由各种生长因子激活,
致癌事件。 为了响应有丝分裂因子,例如上皮生长因子 (EGF),ERK 被激活
并通过调节参与细胞的转录因子的活性来促进细胞增殖和分化
周期进展和增殖。 然而,对于 ERK 信号如何直接控制的了解却少之又少。
代谢过程。 靶向激酶 RAF、MEK 或 ERK 是目前用于治疗多种疾病的策略
疾病,包括癌症、2 型糖尿病、代谢紊乱和神经退行性疾病,但机制
抵抗经常发生。 因此,阐明 ERK 的下游目标,更具体地说
ERK 信号传导驱动新陈代谢的分子机制对于识别新的
针对 ERK 驱动疾病的治疗策略。 最近我们发现,机械目标
雷帕霉素复合物 1 (mTORC1) 通过不同的方式刺激嘌呤和嘧啶的从头合成
分子机制。 核苷酸在基础和细胞水平的新陈代谢中发挥着核心作用。 嘌呤
嘧啶碱基可以从头合成或通过回收途径回收。 核苷酸携带
化学能量包(例如 ATP、GTP)遍布整个细胞,满足许多细胞功能的需要
能量,包括:合成核酸、蛋白质和细胞膜。 根据本提案,我们建议
研究 ERK 信号传导对核苷酸合成的影响。 我们已经确定 ERK 信号传导会刺激
通过 PFAS 酶的翻译后修饰,在各种环境下从头合成嘌呤
(磷酸甲酰甘氨脒合酶)属于从头嘌呤合成途径。 我们建议
剖析这种调节背后的分子机制(具体目标 1)。 我们将确定以下人员的角色:
ERK-PFAS 轴控制细胞生长(具体目标 2)。 此外,我们将确定
ERK 介导的生物学和疾病中的这一规定(具体目标 3)。 因此,该提案的总体目标是
破译 ERK 控制正常和正常状态下核苷酸从头合成的分子机制
病理设置。 我们预计拟议的研究将产生关于核苷酸如何发挥作用的新见解
合成受 ERK 调节,并将发现治疗靶点以干扰 ERK 介导的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Issam BEN-SAHRA其他文献
Issam BEN-SAHRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Issam BEN-SAHRA', 18)}}的其他基金
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10469579 - 财政年份:2021
- 资助金额:
$ 33.18万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10277131 - 财政年份:2021
- 资助金额:
$ 33.18万 - 项目类别:
Control of RNA methylation by growth signals through the mTORC1 pathway
通过 mTORC1 途径通过生长信号控制 RNA 甲基化
- 批准号:
10630233 - 财政年份:2021
- 资助金额:
$ 33.18万 - 项目类别:
Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
- 批准号:
10321274 - 财政年份:2020
- 资助金额:
$ 33.18万 - 项目类别:
Regulation of de novo purine synthesis by the MAPK/ERK pathway
MAPK/ERK 途径对嘌呤从头合成的调节
- 批准号:
10078280 - 财政年份:2020
- 资助金额:
$ 33.18万 - 项目类别:
Linking Oncogenic Signaling to Tumor Metabolism
将致癌信号传导与肿瘤代谢联系起来
- 批准号:
9477858 - 财政年份:2015
- 资助金额:
$ 33.18万 - 项目类别:
Linking oncogenic signaling to tumor metabolism
将致癌信号与肿瘤代谢联系起来
- 批准号:
8868257 - 财政年份:2015
- 资助金额:
$ 33.18万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 33.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing breast cancer invasion and proliferation when co-aggregated with adipocytes in multicellular spheroids created with a custom bioreactor to augment cell-cell connectivity.
当与多细胞球体中的脂肪细胞共聚集时,表征乳腺癌的侵袭和增殖,该多细胞球体是用定制生物反应器创建的,以增强细胞间的连接。
- 批准号:
10334113 - 财政年份:2022
- 资助金额:
$ 33.18万 - 项目类别:














{{item.name}}会员




