CRCNS: Towards Pain Control: Synergizing Computational and Biological Approaches
CRCNS:迈向疼痛控制:协同计算和生物学方法
基本信息
- 批准号:9242340
- 负责人:
- 金额:$ 39.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acupuncture TherapyAddressAdultAdverse effectsAffectAfferent NeuronsAnimalsAssimilationsBackBehaviorBiologicalBrainClinicalComplementary therapiesComputer SimulationDataElectric StimulationElectrophysiology (science)Estimation TechniquesFiberFutureHandHyperalgesiaIn VitroIndividualInjuryInstructionInterneuronsMassageMeasuresMethodsModelingMusNerveNerve FibersNeuronsNociceptionOutputPainPain managementPatternPeripheral Nerve StimulationPharmaceutical PreparationsPhysiologicalPhysiologyPlayPopulation HeterogeneityPosterior Horn CellsProcessPropertyRegulationRoleSensorySignal TransductionSpinalStimulusSystemSystems TheoryTactileTechniquesTestingTherapeuticTransgenic MiceTreatment Efficacyaddictionalternative treatmentbasechronic paincontrol theoryconventional therapydorsal hornexcitatory neurongenetic approachimprovedin vitro activityin vivoinhibitory neuroninjuredinnovationnerve injuryneuroregulationnovelnovel therapeuticspain inhibitionpatch clampprogramsresearch studyresponsesensory inputsensory stimulusspontaneous painsuccesstooltransmission process
项目摘要
Chronic pain affects -100 million adults in the US, and is inadequately treated with drugs, that are often toxic
and have side effects (e.g., addiction). Electrical stimulation in targeted nerve fibers is a promising new
therapy, but has had suboptimal efficacy and limited long-term success as its mechanisms of action are
unclear. Complementary therapies, such as acupuncture and massage that also involve neuromodulation as
a mode of action, have not been quantitatively assessed. Critical to advancing pain therapy is a deeper
mechanistic understanding of how a nociceptive signal is processed and modulated in spinal dorsal horn
(DH), the first central relay station of nociceptive signaling. There are 3 major functionally distinct subsets of
neurons in the DH that play different roles in pain transmission. Excitatory neurons and inhibitory neurons
form important local pain circuitry that modulates activity of projection neurons that send ascending pain
signals to the brain. It is critical to understand the specific roles for each neuron subset and the therapeutic
actions of neurostimulation, tactile inputs, and drugs. For example, do they respond differently to different
therapies? Can certain patterns of stimulation selectively inhibit or excite any subset neurons to maximize
pain inhibition? These fundamental questions could not be easily addressed in a quantitative manner before
this study. First, experimental barriers limit probing the DH to uncover the circuit topology, because it has
been difficult to differentiate different subsets of DH neurons while simultaneously studying their
physiological properties. Computational models of the DH, on the other hand, can predict how changes in
sensory inputs influence pain transmission, but current models are hand-tuned, assume a fixed circuitry,
nonlinear, high dimensional and thus intractable for sensitivity analysis - rendering a computational barrier.
We will break these barriers and will construct a tractable data-driven computational model of the DH that
enables powerful predictions on how different treatments alter neuronal activity in the DH. State-of-the-art
electrophysiological techniques and powerful mouse genetic approaches will delineate the effects of sensory
stimuli and stimulation on various subsets of DH neurons, and these data will be used to estimate the
parameters and circuit topology of a mechanistic model of the DH. Model reduction will then be applied to
generate a tractable characterization of the DH enabling sensitivity analysis. Developing and validating this
innovative model will allow predictions that may differentiate various pain treatments and integrative
approaches that can be readily tested in animals.
RELEVANCE (See instructions):
Chronic pain affects about 100 million adults in the US, but remains inadequately treated. Critical to
advancing pain therapy is a deeper mechanistic understanding of how a nociceptive signal is processed and
modulated in spinal dorsal horn (DH), the first central relay station of nociceptive signaling. We will combine
state-of-the-art electrophysiological techniques and mouse genetic approaches with system identification
tools to construct a tractable computational model of the DH that will enable powerful predictions on how
different treatments alter neuronal activity in the DH.
慢性疼痛影响--美国有1亿成年人没有得到充分的药物治疗,这些药物往往是有毒的
并有副作用(如上瘾)。靶向神经纤维的电刺激是一种很有前途的新技术
治疗,但疗效不佳,长期成功有限,因为其作用机制是
不清楚。补充疗法,如针灸和按摩,也涉及神经调节,如
一种行动模式,还没有得到量化评估。推进疼痛治疗的关键是更深层次的
脊髓背角伤害性信号处理和调制机制的研究
(Dh),第一个伤害性信号的中央中继站。有3个主要的功能截然不同的子集
在痛觉传递中扮演不同角色的神经元。兴奋性神经元和抑制性神经元
形成重要的局部痛觉回路,调节发送上行性疼痛的投射神经元的活动
向大脑发出信号。了解每个神经元亚群的特定作用和治疗是至关重要的
神经刺激、触觉输入和药物的作用。例如,他们对不同的
治疗?特定的刺激模式能否选择性地抑制或兴奋任何子集的神经元以使其最大化
疼痛抑制?这些根本问题以前不能很容易地以定量的方式解决
这项研究。首先,实验障碍限制了探测dh以发现电路拓扑,因为它有
很难区分不同的DH神经元亚群,同时研究它们的
生理特性。另一方面,卫生署的计算模型可以预测
感觉输入影响疼痛的传递,但目前的模型是手动调整的,假设有固定的电路,
非线性、高维,因此很难用于敏感性分析-呈现计算障碍。
我们将打破这些障碍,构建一个易于处理的数据驱动的卫生署计算模型
使强大的预测不同的治疗如何改变神经细胞的活动在脱氢酶。最先进的
电生理技术和强大的小鼠遗传方法将描绘出感觉的影响
刺激和刺激,这些数据将被用来估计
建立了双绞线机械模型的参数和电路拓扑图。然后将模型降阶应用于
生成易于处理的DH特征,以便进行敏感性分析。开发和验证此功能
创新的模式将允许预测,可能会区分各种疼痛治疗和综合
可以很容易地在动物身上测试的方法。
相关性(请参阅说明):
慢性疼痛在美国影响着大约1亿成年人,但仍然没有得到充分的治疗。至关重要的是
推进疼痛治疗是对伤害性信号是如何处理的更深层次的机械理解
在伤害性信号的第一个中央中继站--脊髓背角(DH)中调制。我们将联合起来
最新的电生理技术和小鼠遗传方法与系统识别
构建一个易于处理的卫生署计算模型的工具,这将使强大的预测如何
不同的治疗方法会改变双侧大脑半球的神经元活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sridevi V. Sarma其他文献
The effects of DBS patterns on basal ganglia activity and thalamic relay
- DOI:
10.1007/s10827-011-0379-z - 发表时间:
2012-01-13 - 期刊:
- 影响因子:2.000
- 作者:
Rahul Agarwal;Sridevi V. Sarma - 通讯作者:
Sridevi V. Sarma
Sridevi V. Sarma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sridevi V. Sarma', 18)}}的其他基金
EEG Biomarkers Derived from Dynamical Network Models Enable Rapid Paths to Accurate Diagnosis and Effective Treatment of Epilepsy
源自动态网络模型的脑电图生物标志物为癫痫的准确诊断和有效治疗提供了快速途径
- 批准号:
10665213 - 财政年份:2023
- 资助金额:
$ 39.49万 - 项目类别:
Using Feedback Control to Suppress Seizure Genesis in Epilepsy
使用反馈控制抑制癫痫发作
- 批准号:
9920327 - 财政年份:2019
- 资助金额:
$ 39.49万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10611557 - 财政年份:2018
- 资助金额:
$ 39.49万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10352692 - 财政年份:2018
- 资助金额:
$ 39.49万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
10385747 - 财政年份:2018
- 资助金额:
$ 39.49万 - 项目类别:
CRCNS: MOVE!-MOdeling of fast Movement for Enhancement via neuroprosthetics
CRCNS:MOVE!-通过神经修复术增强快速运动建模
- 批准号:
9898497 - 财政年份:2018
- 资助金额:
$ 39.49万 - 项目类别:
CRCNS: Towards Pain Control: Synergizing Computational and Biological Approaches
CRCNS:迈向疼痛控制:协同计算和生物学方法
- 批准号:
9323301 - 财政年份:2016
- 资助金额:
$ 39.49万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.49万 - 项目类别:
Research Grant














{{item.name}}会员




