SVM-based Analysis of the Fine Scale Structure of Regulatory Elements

基于支持向量机的监管要素精细尺度结构分析

基本信息

  • 批准号:
    9097757
  • 负责人:
  • 金额:
    $ 47.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-13 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The ENCODE projects have generated large high-quality functional genomic datasets which have the potential to dramatically impact our understanding of the specific mechanisms and general principles of the function of cell-specific regulatory elements. We propose to develop an SVM-based computational model to predict enhancers from these datsets and resolve their fine- scale structure. We will utilize an integrative approach to investigate these fine scale features which combines novel computational development, statistical analysis of ENCODE datasets, systematic scoring of human sequence variation, and high throughput validation to improve our understanding of how DNA sequence features and variation contribute to regulatory function. Based on our previous work using k-mer features to predict mammalian enhancers from genomic DNA sequence, we propose improvements in the treatment of sequence features which facilitate statistically robust estimation of long k-mer features and improved spatial resolution. This approach does not rely on previous biological knowledge, and uncovers the sets of novel TFs and cofactors which specify their cell-specific activity. We will train this model on ENCODE DNase-seq and ChIP-seq data and catalogue the regulatory elements in the available human cell-line and mouse datasets. In addition, this model makes specific predictions of the contributions of individual features to enhancer activity, so we propose to experimentally test this set of predictions by directly quantifying the impact of mutation of these elements in a luciferase reporter system. Finally we will evaluate and experimentally assess the predicted impact of specific human SNPs in a set of targeted cell lines. This project should contribute significantly toward a predictive model of regulatory element function and an understanding of how sequence variation impacts disease.
描述(由申请人提供):ENCODE项目产生了大量高质量的功能基因组数据集,这些数据集有可能极大地影响我们对细胞特异性调控元件功能的特定机制和一般原理的理解。我们建议建立一个基于支持向量机的计算模型来预测这些数据集的增强子并解析它们的精细尺度结构。我们将利用一种综合的方法来研究这些精细尺度的特征,结合新的计算发展、ENCODE数据集的统计分析、人类序列变异的系统评分和高通量验证,以提高我们对DNA序列特征和变异如何促进调控功能的理解。基于我们之前使用k-mer特征从基因组DNA序列中预测哺乳动物增强子的工作,我们提出了对序列特征处理的改进,以促进对长k-mer特征的统计稳健估计并提高空间分辨率。这种方法不依赖于以前的生物学知识,并揭示了一系列新的tf和辅助因子,这些因子指定了它们的细胞特异性活性。我们将在ENCODE dna -seq和ChIP-seq数据上训练该模型,并在可用的人类细胞系和小鼠数据集中编目调控元件。此外,该模型对个体特征对增强子活性的贡献做出了具体预测,因此我们建议通过直接量化荧光素酶报告系统中这些元素突变的影响来实验测试这组预测。最后,我们将在一组目标细胞系中评估和实验评估特定人类snp的预测影响。该项目将对调控元件功能的预测模型和序列变异如何影响疾病的理解做出重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael A Beer其他文献

Machine Learning Sequence Modeling Identifies Gene Regulatory Responses to Bone Marrow Stromal Interactions in Multiple Myeloma
  • DOI:
    10.1182/blood-2023-186981
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Milad Razavi-Mohseni;Dustin Shigaki;Michael A Beer
  • 通讯作者:
    Michael A Beer

Michael A Beer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael A Beer', 18)}}的其他基金

Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
  • 批准号:
    10665735
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
  • 批准号:
    10297375
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
  • 批准号:
    10833813
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
  • 批准号:
    10471939
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
  • 批准号:
    10840531
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
  • 批准号:
    10630157
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
Systematic Identification of Core Regulatory Circuitry from ENCODE Data
从 ENCODE 数据系统识别核心监管电路
  • 批准号:
    10238262
  • 财政年份:
    2017
  • 资助金额:
    $ 47.11万
  • 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
  • 批准号:
    8556758
  • 财政年份:
    2013
  • 资助金额:
    $ 47.11万
  • 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
  • 批准号:
    9304811
  • 财政年份:
    2013
  • 资助金额:
    $ 47.11万
  • 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
  • 批准号:
    8889287
  • 财政年份:
    2013
  • 资助金额:
    $ 47.11万
  • 项目类别:

相似海外基金

Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
  • 批准号:
    24K15172
  • 财政年份:
    2024
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
  • 批准号:
    23K04928
  • 财政年份:
    2023
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 47.11万
  • 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
  • 批准号:
    573688-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10704557
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10537846
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
  • 批准号:
    2753921
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
  • 批准号:
    10328140
  • 财政年份:
    2022
  • 资助金额:
    $ 47.11万
  • 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
  • 批准号:
    10621368
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
  • 批准号:
    2111821
  • 财政年份:
    2021
  • 资助金额:
    $ 47.11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了