Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
基本信息
- 批准号:10297375
- 负责人:
- 金额:$ 133万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-19 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqAdultAtlasesAttentionBackBinding SitesBiological AssayBiological ModelsCRISPR interferenceCRISPR screenCell Differentiation processCell modelCell physiologyCellsChIP-seqChromatin Conformation Capture and SequencingClustered Regularly Interspaced Short Palindromic RepeatsCodeComputing MethodologiesDNA ComputationsDNA Sequence AnalysisDataData SetDevelopmentDevelopmental BiologyDiseaseEctodermElementsEmbryoEmbryonic DevelopmentEmerging TechnologiesEndodermEnhancersEpiblastGene ExpressionGenerationsGenesGeneticGenomicsGerm CellsGerm LayersGoalsHealthHi-CHistonesHomeostasisHumanHuman DevelopmentIndividualKnowledgeLearningMachine LearningMaintenanceMalignant NeoplasmsMapsMass Spectrum AnalysisMeasurementMesodermModelingMusNatural regenerationNeuroectodermOrganoidsPathologicPathway AnalysisPeripheralPhenotypePhysiologicalProteinsProteomicsPublishingRecordsRegulator GenesRegulatory ElementResearch PersonnelResolutionRoleSequence AnalysisSignal TransductionSomatic CellSystemSystems BiologyTestingTissuesVariantWorkalgorithmic methodologiesbasecell typedesignfunctional genomicsgenetic variantgenome-widegenomic variationhuman embryonic stem cellimprovedinnovationmathematical modelmultimodalitynetwork modelspluripotencypredictive modelingscreeningself-renewalsingle-cell RNA sequencingstem cell biologystem cell differentiationtranscription factortranscriptome sequencing
项目摘要
ABSTRACT
Predicting the impact of genomic variation requires quantitative modeling to deconstruct the interplay
between multiple individual variants and to determine their combined effects on gene regulatory networks
(GRNs) that control cell state and cell function. We focus on the GRNs that control early human development
as a paradigm. Arguably the most important lineage decision during mammalian development is the decision of
epiblast cells to exit the pluripotent state (a state when the cells have the potential to give rise to all somatic
cells and germ cells), and differentiate into one of the three primary germ layers, the endoderm, mesoderm,
and ectoderm. This pluripotent state and the trilineage differentiation can be captured using cultured human
embryonic stem cells (hESCs). Much attention has focused on the GRNs underlying the maintenance of the
self-renewing pluripotent state, but the GRNs governing hESC trilineage differentiation remain largely
unexplored. We previously conducted genome-scale CRISPR/Cas screens to discover protein-coding genes
that regulate the transition of hESCs to definitive endoderm. Based on the genomic and genetic data and
machine learning (gkm-SVM sequence analysis), we expanded our initial simple two transcription factor (TF)
model to a multiple TF cooperative model. Here we propose an integrative approach examining the hESC
transition to definitive endoderm, mesoderm and neuroectoderm germ layer identities to improve the
generalizability of GRN models. We will perform quantitative genomic and proteomic measurements with high
temporal and single-cell resolution. These quantitative measurements will be combined with perturbation of key
GRN elements, core TFs and their target enhancers, to inform the generation of dynamic GRN models. To
further improve the precision of our new GRN models, we will map cell trajectories during state transitions
through lineage tracing combined with scRNA-seq. Beyond hESC guided differentiation, the physiological
relevance of enhancers will be further interrogated in human and mouse organoids (gastruloids) and mouse
embryos. We will then apply innovative new computational and algorithmic methods to our multimodal
experimental data to generate GRN models, aiming to learn generalizable principles underlying the
contribution of genomic variants to cellular and ultimately organismal phenotypes. Developing GRN models for
the exit of pluripotency and the acquisition of germ layer identities involves dynamic modeling of the cell state
transition, which will not only inform our understanding of early human development, but can also serve as the
basis for construction of generalizable GRN models for biological transitions during embryonic development,
adult tissue homeostasis and regeneration as well as inappropriate cell fate transitions that occur in
pathological conditions such as cancer.
摘要
预测基因组变异的影响需要定量建模来解构相互作用
在多个个体变异之间,并确定它们对基因调控网络的综合影响,
GRN控制细胞状态和细胞功能。我们专注于控制早期人类发育的GRNs
作为一个范例。可以说,哺乳动物发育过程中最重要的谱系决定是
细胞具有产生所有体细胞分化的潜能,
细胞和生殖细胞),并分化成三个初级胚层之一,内胚层,中胚层,
和外胚层这种多能性状态和三系分化可以使用培养的人巨噬细胞来捕获。
胚胎干细胞(hESC)。许多注意力都集中在维持
自我更新的多能状态,但GRNs管理hESC三系分化仍然主要是
未开发的我们之前进行了基因组规模的CRISPR/Cas筛选以发现蛋白质编码基因
调节hESC向定形内胚层的转变。基于基因组和遗传数据,
机器学习(gkm-SVM序列分析),我们扩展了我们最初简单的两个转录因子(TF)
模型到多TF合作模型。在这里,我们提出了一个综合的方法检查人胚胎干细胞
向定形内胚层、中胚层和神经外胚层的胚层身份转变,以改善
GRN模型的推广性。我们将进行定量基因组和蛋白质组学测量,
时间和单细胞分辨率。这些定量测量将与密钥的扰动相结合。
GRN元件、核心TF及其靶增强子,以告知动态GRN模型的生成。到
为了进一步提高我们新的GRN模型的精度,我们将在状态转换期间绘制细胞轨迹
通过谱系追踪结合scRNA-seq。除了hESC引导的分化之外,
增强子的相关性将在人和小鼠类器官(类胃体)和小鼠类胃体(类胃体)中进一步研究。
胚胎然后,我们将应用创新的新的计算和算法方法,我们的多模态
实验数据生成GRN模型,旨在学习
基因组变异对细胞和最终生物体表型的贡献。开发GRN模型,
多能性的退出和胚层身份的获得涉及细胞状态的动态建模
过渡,这不仅将告知我们对早期人类发展的理解,而且还可以作为
为胚胎发育过程中生物学转变构建可推广的GRN模型奠定了基础,
成年组织的稳态和再生以及发生在
病理状况,如癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A Beer其他文献
Machine Learning Sequence Modeling Identifies Gene Regulatory Responses to Bone Marrow Stromal Interactions in Multiple Myeloma
- DOI:
10.1182/blood-2023-186981 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Milad Razavi-Mohseni;Dustin Shigaki;Michael A Beer - 通讯作者:
Michael A Beer
Michael A Beer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A Beer', 18)}}的其他基金
Sequence-based Machine Learning for Inference of Dynamic Cell State Gene Network Models
基于序列的机器学习用于动态细胞状态基因网络模型的推理
- 批准号:
10665735 - 财政年份:2022
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10833813 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10471939 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineage decisions
控制早期人类谱系决策的基因调控网络的基因组控制
- 批准号:
10630157 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Genomic control of gene regulatory networks governing early human lineagedecisions
控制早期人类谱系决定的基因调控网络的基因组控制
- 批准号:
10840531 - 财政年份:2021
- 资助金额:
$ 133万 - 项目类别:
Systematic Identification of Core Regulatory Circuitry from ENCODE Data
从 ENCODE 数据系统识别核心监管电路
- 批准号:
10238262 - 财政年份:2017
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9097757 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8556758 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
9304811 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
SVM-based Analysis of the Fine Scale Structure of Regulatory Elements
基于支持向量机的监管要素精细尺度结构分析
- 批准号:
8889287 - 财政年份:2013
- 资助金额:
$ 133万 - 项目类别:
相似国自然基金
基于ATAC-seq与DNA甲基化测序探究染色质可及性对莲两生态型地下茎适应性分化的作用机制
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
利用ATAC-seq联合RNA-seq分析TOP2A介导的HCC肿瘤细胞迁移侵
袭的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向图神经网络ATAC-seq模体识别的最小间隔单细胞聚类研究
- 批准号:62302218
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
靶向治疗动态调控肺癌细胞DNA可接近性的ATAC-seq分析
- 批准号:81802809
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
运用ATAC-seq技术分析染色质可接近性对犏牛初级精母细胞基因表达的调控作用
- 批准号:31802046
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq和RNA-seq研究CWIN调控采后番茄果实耐冷性作用机制
- 批准号:31801915
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于ATAC-seq高精度预测染色质相互作用的新方法和基于增强现实的3D基因组数据可视化
- 批准号:31871331
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Project #2 Integrated single-nucleus multi-omics (ATAC-seq+RNA-seq or chromatin accessibility + RNA-seq) of human TGs
项目
- 批准号:
10806548 - 财政年份:2023
- 资助金额:
$ 133万 - 项目类别:
A transposase system for integrative ChIP-exo and ATAC-seq analysis at single-cell resolution
用于单细胞分辨率综合 ChIP-exo 和 ATAC-seq 分析的转座酶系统
- 批准号:
10210424 - 财政年份:2018
- 资助金额:
$ 133万 - 项目类别:
EAPSI: Developing Single Nucleus ATAC-seq to Map the Ageing Epigenome
EAPSI:开发单核 ATAC-seq 来绘制衰老表观基因组图谱
- 批准号:
1714070 - 财政年份:2017
- 资助金额:
$ 133万 - 项目类别:
Fellowship Award
A cloud-based learning module to analyze ATAC-seq and single cell ATAC-seq data
基于云的学习模块,用于分析 ATAC-seq 和单细胞 ATAC-seq 数据
- 批准号:
10558379 - 财政年份:2001
- 资助金额:
$ 133万 - 项目类别: