Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
基本信息
- 批准号:10665666
- 负责人:
- 金额:$ 72.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiological AssayCatalogsClustered Regularly Interspaced Short Palindromic RepeatsCodeComputational BiologyCoupledCouplingDataDiagnosticDiseaseEnd Point AssayEpigenetic ProcessEvolutionExperimental DesignsExplosionGene ExpressionGene Expression RegulationGeneticGenetic CodeGenetic DeterminismGenetic VariationGenomeGenomic SegmentGoalsHealthHumanHuman GenomeIncidenceLinkMachine LearningMeasuresMethodsModelingMutagenesisNeural Network SimulationOutcomeOutputParameter EstimationPathogenicityPatientsPhenotypePopulationPopulation GeneticsPreventionRecommendationRegulatory ElementRiskSample SizeSiteSoftware ToolsStatistical ModelsTestingUntranslated RNAUpdateVariantcell typecombinatorialdeep neural networkdesignexperienceexperimental studyflexibilitygene discoverygenetic variantgenome sequencinghealth determinantshuman diseaseimprovedindividual patientmachine learning methodmachine learning modelmembermodels and simulationnovelpredictive modelingstatistical and machine learningsuccesstoolwhole genome
项目摘要
ABSTRACT
Noncoding genetic variation that alters gene regulation is of paramount importance for health, disease, and
evolution. Diseases ranging in incidence from the most common to the most rare all have substantial risk
associated with regulatory variation; and most of the genetic differences between closely related species are
noncoding. Whole genome sequencing can directly identify that variation but to realize its potential to elucidate
the genetic determinants of health and disease, will require accurate annotation of this noncoding variation for
functionality. In coding sequence, the genetic code allows variants to be annotated to a rough hierarchy of likely
functional effects and pathogenicity. In noncoding sequence such annotation is less clear. Perturbation assays,
i.e., assays that modify genetic or epigenetic states and measure the effect of those perturbations on regulatory
endpoints, offer a possible path to annotating noncoding variation. However, to fully leverage this data, novel
and sophisticated statistical and machine learning approaches are required to extract useful information from
those assays, to integrate that information across regulatory endpoints, and to extrapolate findings so that
annotation of previously unobserved (unperturbed) variation in diverse cell types is possible. The goal of the
Duke Prediction Center is to develop the analytic approaches and tools that will allow for the routine
annotation of noncoding variation for functionality and ultimately pathogenicity. Aim 1 is to establish best
practices in perturbation assay design and analysis. This will allow IGVF characterization centers design their
experiments so that, when coupled with optimized analyses, the data produced will be maximally informative for
subsequent predictive modeling. Aim 2 is to develop novel mechanistic machine learning approaches for
predicting the functional effect of noncoding variation on function in diverse cell-types. Aim 3 is to identify
noncoding genomic regions that are subject to functional constraint which will be leveraged in prioritizing variants
for pathogenicity. The expected outcomes of this project will be (i) robust estimates of optimal experimental
design parameters and recommendations for analysis tools and best practices for the various assays used within
the IGVF consortium, (ii) predicted functional effects of observed variation to be shared through the IGVF
variant/phenotype catalog as well as a state-of-the-art machine learning method (and associated tools) that can
identify previously-unknown interactions among genomic variants, both observed and novel, and predict their
functional impact in diverse cell types, and (iii) a list of regulatory elements subject to functional constraint shared
through the IGVF variant/phenotype catalog and a principled prioritization framework (and associated tools) for
interpreting variation within patient genomes for pathogenicity. Due to the considerable success of genetics,
there are thousands of unknown regulatory causes of disease. Each of those causes is an opportunity to improve
treatment, diagnostics, or prevention. This project will be a major advance towards unlocking that potential.
摘要
改变基因调控的非编码遗传变异对健康、疾病和
进化论。发病率从最常见到最罕见的疾病都有很大的风险
与调控变异有关;密切相关物种之间的大部分遗传差异是
非编码。全基因组测序可以直接识别这种变异,但要实现它的潜力来阐明
健康和疾病的遗传决定因素,需要对这种非编码变异进行准确的注释
功能性。在编码序列中,遗传密码允许变体被注释到大致的可能的层次结构
功能效应和致病性。在非编码序列中,这样的注释不太清楚。微扰分析,
即,修改遗传或表观遗传状态并测量这些扰动对调控的影响的分析
端点为注释非编码变体提供了一条可能的途径。然而,为了充分利用这些数据,新颖的
需要复杂的统计和机器学习方法才能从
这些分析,以整合跨监管终端的信息,并推断结果,以便
注释以前未观察到的(未受干扰的)不同细胞类型的变异是可能的。的目标是
杜克预测中心将开发分析方法和工具,以使例行程序
对功能和最终致病性的非编码变异的注释。目标1是建立最好的
扰动分析设计和分析的实践。这将允许IGVF表征中心设计他们的
实验,当与优化分析相结合时,产生的数据将最大限度地为
随后的预测性建模。目标2是开发新的机械机器学习方法,用于
预测非编码变异对不同细胞类型功能的影响。目标3是确定
受功能限制的非编码基因组区域,这些限制将被用于区分变体的优先顺序
致病性。该项目的预期结果将是(I)对最优实验的稳健估计
中使用的各种分析工具和最佳实践的设计参数和建议
IGVF联盟,(2)预测了观测到的变化的功能影响将通过IGVF分享
变种/表型目录以及最先进的机器学习方法(和相关工具),可以
识别以前未知的基因组变异之间的相互作用,包括观察到的和新的,并预测它们的
不同细胞类型的功能影响,以及(Iii)共享的受功能约束的调控要素列表
通过IGVF变种/表型目录和有原则的优先排序框架(及相关工具)
解释患者基因组中的致病性变异。由于遗传学的巨大成功,
导致疾病的原因有成千上万种未知的调控因素。这些原因中的每一个都是一个改进的机会
治疗、诊断或预防。这个项目将是释放这一潜力的重大进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW S ALLEN其他文献
ANDREW S ALLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW S ALLEN', 18)}}的其他基金
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
- 批准号:
10473740 - 财政年份:2021
- 资助金额:
$ 72.98万 - 项目类别:
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
- 批准号:
10295506 - 财政年份:2021
- 资助金额:
$ 72.98万 - 项目类别:
The Duke FUNCTION Center: Pioneering the comprehensive identification of combinatorial noncoding causes of disease
杜克大学功能中心:开创了疾病组合非编码原因的全面识别
- 批准号:
10271500 - 财政年份:2020
- 资助金额:
$ 72.98万 - 项目类别:
Quantifying the genetic diversity of human regulatory element activity
量化人类调控元件活性的遗传多样性
- 批准号:
10404498 - 财政年份:2019
- 资助金额:
$ 72.98万 - 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
- 批准号:
7692191 - 财政年份:2008
- 资助金额:
$ 72.98万 - 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
- 批准号:
8064557 - 财政年份:2008
- 资助金额:
$ 72.98万 - 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
- 批准号:
7892941 - 财政年份:2008
- 资助金额:
$ 72.98万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
6934516 - 财政年份:2004
- 资助金额:
$ 72.98万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
7437286 - 财政年份:2004
- 资助金额:
$ 72.98万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
7279291 - 财政年份:2004
- 资助金额:
$ 72.98万 - 项目类别:
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 72.98万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 72.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 72.98万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 72.98万 - 项目类别:
Postdoctoral Fellowships