Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
基本信息
- 批准号:8064557
- 负责人:
- 金额:$ 20.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-26 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressBase SequenceCommunitiesComplexComputer softwareDNA SequenceDNA Sequence AnalysisDataData SetDevelopmentDiseaseDisease AssociationDisease ProgressionDocumentationEvolutionFutureGeneticGenetic ResearchGenetic VariationGenomeGenotypeGoalsHaplotypesHuman GeneticsIndividualInformation NetworksInternetInvestigationLocalized DiseaseMajor Depressive DisorderMethodologyMethodsPerformancePopulationPopulation GeneticsProceduresProductionPropertyResearchResearch PersonnelResearch Project GrantsRestRoleSamplingScientistSignal TransductionSingle Nucleotide PolymorphismSoftware ToolsSource CodeStatistical MethodsStratificationStructureTestingTrustVariantWorkbasecase controlcostdatabase of Genotypes and Phenotypesfallsgenetic associationgenetic variantgenome sequencinggenome wide association studyhuman diseasenovelresearch studyresponsesimulationstatisticstooluser friendly software
项目摘要
Human genetics research is on the cusp of a major transformation in how genetic variation is captured-from a
marker-based approach to one based on a complete characterization of an individual's genome by
sequencing. This is an exciting prospect but not without its challenges. The imminent production of large
amounts of sequence data raises several issues on how best to use these data. For example, because of the
sheer scale of the data, statistical approaches for associating sequence variants with human disease need to
be efficient, both statistically and computationally. In addition, most genetic association experiments in the near
term will not rely solely on sequence data but instead will have sub-samples of individuals with sequence data
while the rest of the sample will remain unsequenced but will contain genotype information. Alternatively,
sequence data may be available on a separate, external sample. Thus it will be important to develop statistical
methods that can appropriately integrate these various types of data into a unified inferential framework.
This research project will address these issues by proposing to develop a novel class of sequence-
based haplotype sharing statistics that exploit the implications of DNA sequence evolution in testing
for variant/disease association (specific aim 1). Further, we propose to develop a statistical framework
that allows for the unified analysis of DNA sequence and genotype data (specific aim 2). Throughout we
will leverage our previous work developing robust methods for haplotype inference to develop computationally
and statistically efficient procedures that remain robust to population genetic assumptions. A stratified analytic
approach will be emphasized to allow for adjustment for confounding due to population stratification. Efficient
Monte Carlo procedures will be proposed to account for the large number of sequence variants investigated.
We will develop a suite of software tools that fully implement the methodology developed and make
them freely available to the general research community (specific aim 3). Finally, using these tools, we
will analyze a publicly available DNA sequence dataset with the goal of better localizing disease-
associated sequence variants (specific aim 4).
The methods developed through this proposal represent a unified and statistically rigorous framework
for developing powerful tests that exploit evolutionary relationships between DNA sequences while allowing for
disparate data types to be incorporated into a unified analysis. These procedures will give researchers the
tools to more finely localize disease-associated sequence variants, allowing variants to be better prioritized for
subsequent investigation via functional studies. Human genetics research is on the cusp of a major transformation in how genetic variation is captured-from a
marker based approach to one based on a complete characterization of an individual's genome by sequencing.
The imminent production of large amounts of sequencing data, however, leads to questions concerning their
statistical analysis and incorporation into the larger experiment. We address these questions by proposing a
unified and statistically rigorous framework for developing powerful tests that exploit evolutionary relationships
between DNA sequences and that allow for disparate data types to be incorporated into a unified analysis.
人类遗传学研究正处于捕捉遗传变异方式的重大变革的尖端-从一个
一种基于标记的方法,其基于个体基因组的完整特征
测序。这是一个令人兴奋的前景,但也不是没有挑战。即将投产的大型汽车
大量的序列数据引发了如何最好地使用这些数据的几个问题。例如,由于
仅仅是数据的规模,将序列变异与人类疾病联系起来的统计方法需要
在统计和计算上都要有效率。此外,大多数近距离的遗传关联实验
Term将不只依赖于序列数据,而是将具有具有序列数据的个体的子样本
而样本的其余部分将保持未测序,但将包含基因信息。或者,
序列数据可以在单独的外部样本上获得。因此,发展统计将是很重要的
可以将这些不同类型的数据适当地集成到一个统一的推理框架中的方法。
这个研究项目将通过提出开发一类新的序列来解决这些问题--
基于单倍型共享统计,在测试中利用DNA序列进化的含义
对于变种/疾病关联(具体目标1)。此外,我们建议制定一个统计框架
这使得能够对DNA序列和基因数据进行统一分析(具体目标2)。在整个过程中,
我将利用我们之前的工作,开发用于单倍型推断的健壮方法,以在计算上进行开发
以及统计上有效的程序,这些程序对群体遗传假设保持稳健。分层分析
将强调采取办法,以便根据人口分层造成的混乱情况进行调整。高效
将提出蒙特卡罗程序来解释所研究的大量序列变体。
我们将开发一套软件工具,完全实现所开发的方法并使
向一般研究界免费提供(具体目标3)。最后,使用这些工具,我们
将分析一个公开可用的DNA序列数据集,目标是更好地定位疾病-
相关序列变体(特定目标4)。
通过这一提议制定的方法代表了一个统一的、统计上严格的框架
用于开发强大的测试,该测试利用DNA序列之间的进化关系,同时允许
要合并到统一分析中的不同数据类型。这些程序将为研究人员提供
更精细地定位与疾病相关的序列变异的工具,使变异能够更好地优先处理
通过功能研究进行后续研究。人类遗传学研究正处于捕捉遗传变异方式的重大变革的尖端-从一个
一种基于标记的方法,通过测序对个体基因组的完整特征进行分析。
然而,即将产生的大量测序数据导致了关于它们的问题
统计分析,并纳入更大的实验。针对这些问题,我们提出了一个
统一且在统计上严格的框架,用于开发利用进化关系的强大测试
这使得不同的数据类型可以合并到统一的分析中。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A weighted accumulation test for associating rare genetic variation with quantitative phenotypes.
- DOI:10.1186/1753-6561-5-s9-s6
- 发表时间:2011-11-29
- 期刊:
- 影响因子:0
- 作者:Xing, Chuanhua;Satten, Glen A;Allen, Andrew S
- 通讯作者:Allen, Andrew S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW S ALLEN其他文献
ANDREW S ALLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW S ALLEN', 18)}}的其他基金
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
- 批准号:
10665666 - 财政年份:2021
- 资助金额:
$ 20.99万 - 项目类别:
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
- 批准号:
10473740 - 财政年份:2021
- 资助金额:
$ 20.99万 - 项目类别:
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
- 批准号:
10295506 - 财政年份:2021
- 资助金额:
$ 20.99万 - 项目类别:
The Duke FUNCTION Center: Pioneering the comprehensive identification of combinatorial noncoding causes of disease
杜克大学功能中心:开创了疾病组合非编码原因的全面识别
- 批准号:
10271500 - 财政年份:2020
- 资助金额:
$ 20.99万 - 项目类别:
Quantifying the genetic diversity of human regulatory element activity
量化人类调控元件活性的遗传多样性
- 批准号:
10404498 - 财政年份:2019
- 资助金额:
$ 20.99万 - 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
- 批准号:
7692191 - 财政年份:2008
- 资助金额:
$ 20.99万 - 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
- 批准号:
7892941 - 财政年份:2008
- 资助金额:
$ 20.99万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
6934516 - 财政年份:2004
- 资助金额:
$ 20.99万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
7437286 - 财政年份:2004
- 资助金额:
$ 20.99万 - 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
- 批准号:
7279291 - 财政年份:2004
- 资助金额:
$ 20.99万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 20.99万 - 项目类别:
Research Grant