Design, prediction, and prioritization of systematic perturbations of the human genome

人类基因组系统扰动的设计、预测和优先级排序

基本信息

  • 批准号:
    10473740
  • 负责人:
  • 金额:
    $ 72.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Noncoding genetic variation that alters gene regulation is of paramount importance for health, disease, and evolution. Diseases ranging in incidence from the most common to the most rare all have substantial risk associated with regulatory variation; and most of the genetic differences between closely related species are noncoding. Whole genome sequencing can directly identify that variation but to realize its potential to elucidate the genetic determinants of health and disease, will require accurate annotation of this noncoding variation for functionality. In coding sequence, the genetic code allows variants to be annotated to a rough hierarchy of likely functional effects and pathogenicity. In noncoding sequence such annotation is less clear. Perturbation assays, i.e., assays that modify genetic or epigenetic states and measure the effect of those perturbations on regulatory endpoints, offer a possible path to annotating noncoding variation. However, to fully leverage this data, novel and sophisticated statistical and machine learning approaches are required to extract useful information from those assays, to integrate that information across regulatory endpoints, and to extrapolate findings so that annotation of previously unobserved (unperturbed) variation in diverse cell types is possible. The goal of the Duke Prediction Center is to develop the analytic approaches and tools that will allow for the routine annotation of noncoding variation for functionality and ultimately pathogenicity. Aim 1 is to establish best practices in perturbation assay design and analysis. This will allow IGVF characterization centers design their experiments so that, when coupled with optimized analyses, the data produced will be maximally informative for subsequent predictive modeling. Aim 2 is to develop novel mechanistic machine learning approaches for predicting the functional effect of noncoding variation on function in diverse cell-types. Aim 3 is to identify noncoding genomic regions that are subject to functional constraint which will be leveraged in prioritizing variants for pathogenicity. The expected outcomes of this project will be (i) robust estimates of optimal experimental design parameters and recommendations for analysis tools and best practices for the various assays used within the IGVF consortium, (ii) predicted functional effects of observed variation to be shared through the IGVF variant/phenotype catalog as well as a state-of-the-art machine learning method (and associated tools) that can identify previously-unknown interactions among genomic variants, both observed and novel, and predict their functional impact in diverse cell types, and (iii) a list of regulatory elements subject to functional constraint shared through the IGVF variant/phenotype catalog and a principled prioritization framework (and associated tools) for interpreting variation within patient genomes for pathogenicity. Due to the considerable success of genetics, there are thousands of unknown regulatory causes of disease. Each of those causes is an opportunity to improve treatment, diagnostics, or prevention. This project will be a major advance towards unlocking that potential.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANDREW S ALLEN其他文献

ANDREW S ALLEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANDREW S ALLEN', 18)}}的其他基金

Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
  • 批准号:
    10665666
  • 财政年份:
    2021
  • 资助金额:
    $ 72.98万
  • 项目类别:
Design, prediction, and prioritization of systematic perturbations of the human genome
人类基因组系统扰动的设计、预测和优先级排序
  • 批准号:
    10295506
  • 财政年份:
    2021
  • 资助金额:
    $ 72.98万
  • 项目类别:
The Duke FUNCTION Center: Pioneering the comprehensive identification of combinatorial noncoding causes of disease
杜克大学功能中心:开创了疾病组合非编码原因的全面识别
  • 批准号:
    10271500
  • 财政年份:
    2020
  • 资助金额:
    $ 72.98万
  • 项目类别:
Quantifying the genetic diversity of human regulatory element activity
量化人类调控元件活性的遗传多样性
  • 批准号:
    10404498
  • 财政年份:
    2019
  • 资助金额:
    $ 72.98万
  • 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
  • 批准号:
    7692191
  • 财政年份:
    2008
  • 资助金额:
    $ 72.98万
  • 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
  • 批准号:
    8064557
  • 财政年份:
    2008
  • 资助金额:
    $ 72.98万
  • 项目类别:
Robust Methods for the Efficient Analysis and Integration of DNA Sequence Data
DNA 序列数据高效分析和整合的稳健方法
  • 批准号:
    7892941
  • 财政年份:
    2008
  • 资助金额:
    $ 72.98万
  • 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
  • 批准号:
    6934516
  • 财政年份:
    2004
  • 资助金额:
    $ 72.98万
  • 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
  • 批准号:
    7437286
  • 财政年份:
    2004
  • 资助金额:
    $ 72.98万
  • 项目类别:
Advanced Haplotype Analyses in Coronary Artery Disease
冠状动脉疾病的高级单倍型分析
  • 批准号:
    7279291
  • 财政年份:
    2004
  • 资助金额:
    $ 72.98万
  • 项目类别:

相似海外基金

Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
  • 批准号:
    520728-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
    University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10368760
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    10669539
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9570142
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
  • 批准号:
    9915803
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
  • 批准号:
    10259999
  • 财政年份:
    2017
  • 资助金额:
    $ 72.98万
  • 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
  • 批准号:
    21580130
  • 财政年份:
    2009
  • 资助金额:
    $ 72.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2005
  • 资助金额:
    $ 72.98万
  • 项目类别:
    Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
  • 批准号:
    300985-2004
  • 财政年份:
    2004
  • 资助金额:
    $ 72.98万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了